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SUMMARY 

Flexible organic optoelectronic devices have garnered much research interest due 

to their potential as lightweight, environmental friendly, and flexible devices. Particularly 

of interest are organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs). 

Which have inverse principles of operations in that OLEDs consume power to emit light 

and OPVs absorb light to store energy for future power output. However, OLEDs and 

OPVs need a positive transparent conductive electrode for light to exit/enter the device 

and simultaneously allow for the injection/extraction of holes, respectively. 

Optically transparent carbon based nanomaterials including graphene and single 

wall carbon nanotubes (SWNTs) are promising candidates as transparent conductive 

electrodes due to their high electrical conductivity coupled with high optical transparency, 

are robust materials that can be flexed several times with minimal deterioration in their 

electronic properties, and they do not require costly high vacuum processing conditions. 

Therefore, carbon based nanomaterials transparent electrodes are investigated in this 

work.  

In practice carbon nanotubes are easily solution processed through the use of 

surfactants sodium dodecyl sulfate (SDS) and sodium cholate (SC). Allowing SWNTs to 

be deposited onto transparent substrates through vacuum filtration, ultrasonic spray 

coating, dip coating, spin coating, and inkjet printing. However, surfactants are 

electrically insulating, limit chemical doping, and increase optical absorption thereby 

decreasing overall performance of carbon based nanomaterial electrodes. Fortunately, 

surfactants can be removed through nitric acid treatment and annealing in an inert 

environment (e.g. argon), respectively.  

In this thesis, the impact of surfactant removal on the electrode performance was 

investigated. The first goal of this thesis was to add to the fundamental understanding of 

the physics involved with the removal of surfactants for solution processed SWNT 
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electrodes through thermal and chemical treatments at both the nanoscale and the 

macroscale. Nitric acid treatments have been shown to p-dope SWNTs and remove the 

surfactant SDS. However, nitric acid p-doping is naturally dedoped with exposure to air, 

does not completely remove the surfactant SC, and has been shown to damage SWNTs 

by creating defect sites. Annealing at temperatures up to 1000°C is advantageous in that 

it removes insulating surfactants. However, annealing may also remove surface 

functional groups that dope SWNTs. Therefore, there are competing effects when 

annealing SWNT electrodes. The impacts on electrode performance were investigated 

through the use of conductive-tip atomic force microscopy, sheet resistance, and optical 

transmittance measurements. 

The second goal of this thesis was to investigate the potential of graphene SWNT 

composite electrodes as high performing transparent electrodes. To this end, the 

optoelectronic properties and healing of defects of as-made and annealed graphene oxide 

SWNT composites electrodes where characterized. Comparisons were done with as-made 

and annealed SWNT electrodes to understand the individual effects on graphene oxide 

and SWNTs after thermal treatments at temperatures of 1000°C. Furthermore, the 

optoelectronic properties of a chemical vapor deposition grown graphene M-SWNT 

composite electrodes will be characterized to investigate improvements in electrode 

performance.  

 In this thesis, the knowledge gained on the impact of surfactant removal on 

SWNT electrode performance at the nanoscale and macroscale, was utilized to expand 

the present understanding of surfactant removal through thermal and chemical treatment. 

Furthermore, the optoelectronic properties of an M-SWNT electrode were found to have 

a considerable improvement by adding a layer of chemical vapor deposition grown 

graphene below and above the M-SWNT electrode. Finally, a suspected air leakage 

during the period of the work done on annealing graphene oxide SWNT composite 

electrodes produced post annealed samples with an observed increase in optical 
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transmittance, decrease in sheet resistance, and increases in the graphitic to defect ratio 

(indicating the healing of defects). SWNT electrodes prepared for comparison and 

annealed in the same furnace with the suspected air leak exhibited similar behaviors; with 

the exception of mixed SWNTs experiencing an increase in sheet resistance. This was 

attributed to the removal of surface functional groups as was demonstrated in the 

annealing studies performed for the impact of the removal of surface functional groups. 

An extensive study of annealing SWNTs in a controlled oxygen environment was not 

performed due to time constraints and is left as future work.  
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CHAPTER 1 : INTRODUCTION AND MOTIVATION 

1.1 The Importance of Optoelectronic Devices 

Transparent conductive oxides (TCOs) permeate into numerous technological 

applications such as solar cells, display technologies, and lighting sources. A subset of 

TCO applications includes next generation flexible organic optoelectronic devices; which 

have garnered much research interest due to their potential as lightweight, 

environmentally friendly, and flexible devices. As such TCOs are an integral part of 

modern technology and emerging technologies. 

Currently transparent conductive oxides in industry are dominated by indium tin 

oxide (ITO) or tin doped indium oxide[1]. Thin films of indium tin oxide in industry are 

used as the principal transparent electrode because of ITO’s high electrical conductivity 

coupled with high optical transmittance. ITO is capable of delivering a thin film with 

optoelectronic properties of 10Ω/sq coupled with 85% optical transmittance at a 

wavelength of 550nm[2]. ITOs’ remarkable optoelectronic properties are necessary to 

provide acceptable resistive capacitive delays for flat panel displays [2]. However, 

indium tin oxide is inherently brittle, strains as low as 1.5%[3] result in severe 

deterioration of electronic properties [4, 5], is not chemically stable[1], has poor 

transmittance in the blue-green visible regime[6], and a mismatch of ITO’s work function 

with hole transport layers in organic light emitting diodes (OLEDs) typically creates 

significant barriers for hole injection [7]. Furthermore, the principal material in ITO, 

indium, is expensive with a cost of $565 per kilogram in 2010[8], is expected to climb to 

$1000 per kilogram[9], and prices as high as $3000 per kilogram are suggested by the 

Chinese press [9]. Moreover, ITO is typically deposited onto substrates through a 

sputtering process[10]. Sputtering is an inefficient process[11] which requires high 

vacuum[10] conditions thereby driving up manufacturing costs.  
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Transparent electrodes for flexible organic optoelectronic devices must possess 

high electrical conductivity coupled with high optical transparency, electrical stability 

after being flexed several times, resistance to mechanical fracture, and resistance to 

debonding from their substrates. Thus, requiring a replacement material to conventional 

indium tin oxide and requiring significant research on other potential candidates. 

However, flexible optoelectronic devices are advantageous over rigid optoelectronic 

devices in that they do not require costly high vacuum processing conditions, can be 

printed onto low-cost and light weight structures, are environmentally friendly via less 

material processing, and their flexible nature allows them to be implemented into novel 

applications. Examples of flexible organic optoelectronic devices include organic light 

emitting diodes (OLEDs) and organic photovoltaics (OPVs) as shown in Figure 1.1a and 

b ,respectively. 

 

Figure 1.1 (a) Example of an organic light emitting diode (OLED) display[12]. (b) 

Example of an organic photovoltaic (OPV) device[13].  

OLEDs and OPVs have inverse principles of operations, in that OLEDs consume 

power to emit light and OPVs absorb light to store energy for future power output. 

OLEDs can be used in applications ranging from lighting in flashlights to flat panel 

displays for televisions. Their flexible and lightweight nature allows them to be utilized 

in emerging technologies such as roll-up displays. Potentially low-cost OPVs are 

promising candidates as solar cells to meet the increasing energy demands, as their 

lightweight and flexible nature allows them to be incorporated into everyday products 

such as clothing, backpacks, and other wearable apparel. 



3 
 

Though flexible optoelectronic devices have advantages over traditional rigid 

optoelectronic devices, they are currently more expensive to manufacture and there are 

still many outstanding technical problems that still need to be resolved; most notably 

there is the need for a flexible transparent conductive electrode to replace ITO. 

1.1.1 The Importance of Lighting Sources 

Lighting sources are integral to society, however current technologies are not 

energy efficient and sustainable[14]. In literature it is typical to evaluate performance of 

lighting sources based on their luminous efficacy (lumens per watt). Historical and 

predicted luminous efficacies of light sources are presented in Figure 1.2. In Figure 1.2 it 

is shown that OLEDs are predicted to have significantly higher achievable luminous 

efficacies than traditional lighting sources (with the exception of LEDs) by 2020. 

Recently in 2010, General Electric developed a flexible white OLED with a 56 lumens 

per watt efficacy [15] which is consistent with the model shown in Figure 1.2.  

 

Figure 1.2 Luminous efficacy of light sources (Historical and Predicted). Taken from 

reference [14]. 
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Currently organic light emitting diodes (OLEDs) are estimated to have maximum 

luminous efficacies of radiation of 350 lumens per watt [14]. The higher attainable 

lumens per watt efficacies for OLEDs allow for the possibility of more energy efficient 

lighting sources and displays than what is currently in the market. A white OLED panel is 

expected to have a cost of $6 per kilolumen by 2020[14]. While LEDs are expected to 

cost $1 per kilolumen[14]. 

Though OLEDs are more expensive than LEDs, OLEDs have a few advantages 

over LEDs. First, LEDs have narrow-band emissions which can emit light either in the 

ultraviolet, visible, or infrared regimes [14]. Thus in order for LEDs to produce white 

light for lighting applications, the LED’s emission has to be converted into white light. 

This reduces luminous efficacy, requires more complicated design architectures, and 

complicates manufacturing processes [14]. While OLED devices have broad emission 

spectra, allowing for the possibility to tune emitted light and thereby making white light 

easier to produce. Furthermore, the device cost for OLEDs is expected to drop further in 

the future due to its ability of being printed onto low cost transparent substrates through 

an inkjet printing process [16]. This leads to more environmentally friendly processes 

through simpler manufacturing methods. Finally, the ability to tune emitted light removes 

the need for backlights in display technologies such as LCD and LED-LCD displays, 

resulting in more energy efficient displays.  

1.1.2 The Importance of Solar Cells 

In 2005 Nobel laureate Dr. Richard Smalley discussed what he coined the 

“Terawatt challenge”[17]. Smalley went onto say that in order to provide energy for 10 

billion people in the world by 2050 that 60 terawatts of energy would need to produced or 

the equivalent of 900 million barrels of oil per day[17]. He called for the need of a “new 

oil” that was clean (little to no CO2 emissions), cheap (pennies per watt), and abundant 
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[17]. Smalley suggested that solar power is the best sustainable energy source to meet the 

terawatt challenge[17] with an available resource of 125,000 terawatts per year[18]. 

To address the terawatt challenge Smalley suggested that photovoltaic devices 

need only achieve a 10% power conversion efficiency and placed in areas of high solar 

radiation[17]. Figure 1.3 presents reported power conversion efficiencies of solar cell 

technologies over time. 

 

Figure 1.3 The progress of numerous solar cell technologies’ efficiency over time. Taken 

from reference [19]. 

As can be seen in Figure 1.3 the technology to produce solar cells with 10% 

efficiency has already been realized. This makes solar cell technologies well suited to 

gather the required power to meet the terawatt challenge. However, the outstanding 

obstacle with solar technologies is cost. OPVs are advantageous in that they do not 

require costly high temperature vacuum processing, can be printed onto low cost and 

lightweight flexible substrates such as Poly(ethylene terephthalate) (PET). This allows 

OPVs to be manufactured at lower costs in the future through simpler manufacturing 
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processing and less material utilization. Furthermore, OPV’s lightweight and flexible 

structure allows them to be incorporated into wearable apparel, giving them the potential 

to be nearly ubiquitous in future societies. Moreover, organic photovoltaics have recently 

achieved power conversion efficiencies of 8.1%[19] with efficiencies expected to steadily 

increase with ongoing technological advancements. Therefore, OPVs are potential 

candidates to harness solar power to address the terawatt challenge by providing a means 

to obtain cheap, clean, and abundant energy. 

1.1.3 Principles of Operation of Organic Optoelectronic Devices 

 In Figure 1.4 the typical architecture of an OLED is presented. In OLEDs, holes 

are injected into the transport layer through the positive electrode when a voltage is 

applied across it. Similarly, electrons are injected into the emissive layer through the 

negative electrode, when a voltage is applied. As the hole and electron drift to the 

transport and emissive heterojunction they combine to form an exciton that emits light in 

a process known as electroluminescence (EL), where thereafter light is emitted through 

the transparent positive electrode and transparent substrate.  

 
Figure 1.4 Typical organic light emitting diode architecture. Taken from reference [20]. 

A schematic of a typical architecture of an OPV is shown in Figure 1.5. In an 

OPV light in the form of photons enters the device, where it is transmitted through the 

transparent substrate and positive electrode. This photon is absorbed in the donor layer, 

where it generates an electron-hole pair, formally known as an exciton. This exciton is 

Light 
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coulombically bound, a result of Coulomb’s Law that states that opposite charges are 

attracted to each other, as it drifts to the acceptor/donor (A/D) heterojunction. When the 

exciton reaches the A/D heterojunction the exciton will dissociate, meaning that the 

electron and hole from the exciton are transferred to the acceptor and donor layer, 

respectively. This dissociation will only occur if the selected acceptor layer has an 

appropriate work function such that it would be energetically favorable for the exciton to 

dissociate[21]. After the exciton has successfully dissociated the electron and hole then 

diffuse to the negative and positive electrodes, respectively; where they are extracted for 

future power output [20]. 

 

Figure 1.5 Typical organic photovoltaic architecture. Taken From Reference [20]. 

1.2 The Current Status of Transparent Conductive Oxides 

Currently transparent electrodes for optoelectronic device are dominated by metal 

oxides where primarily indium tin oxide is the principal transparent electrode. Alternative 

metal oxide semiconductors include binary doped zinc oxide, binary doped tin oxide, and 

binary doped indium oxide films [22]. In Figure 1.6 the resistivities of zinc oxide, tin 

oxide, and indium oxide thin films over time are presented. Metal oxide semiconductors’ 

electronic properties where initially quantified in literature in terms of resistivity as 

opposed to sheet resistance. 

Light 
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Figure 1.6 Reported resistivities of indium oxide, tin oxide, and zinc oxides thin film as 

transparent conducting oxides from 1970-2000. Taken from reference [22]. 

As can be seen in Figure 1.6 tin oxide films resistivity were generally too high to 

be implemented as transparent electrodes and indium oxides films suffered similar 

disadvantages as ITO, most notably where the principal material, indium, is expensive. 

Zinc oxide films offer competitive electronic properties, are more chemically stable, 

more abundant, and less expensive[10, 22]. Specifically aluminum zinc oxide has been 

shown to have comparable performance to ITO in OLEDs [23]. However, metal oxide 

semiconductors’ inherent brittle nature makes them unsuitable for flexible organic 

optoelectronics. Furthermore, metal oxide semiconductors generally require high vacuum 

processing conditions which have high costs associated with, thereby reducing the 

feasibility of manufacturing lost cost optoelectronic devices. 

1.3 Flexible Alternatives to Indium Tin Oxide 

Flexible transparent conductive alternatives to ITO include conductive polymers 

such as PEDOT:PSS and carbon based nanomaterials including graphene and carbon 

nanotubes. PEDOT:PSS is advantageous over metal oxide semiconductors because it can 

be readily dispersed in water allowing for simpler manufacturing processes[24] to reduce 
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costs for cheaper optoelectronic devices. However, PEDOT:PSS electronic properties are 

insufficient with state-of-the-art films exhibiting 350Ω/sq coupled with 80% optical 

transmittance compared to 10 Ω/sq with 80% transmittance for ITO.  

Optically transparent carbon based nanomaterials (CBNs) including carbon 

nanotubes (CNTs) and graphene are promising candidates as transparent conductive 

electrodes (TCEs) due to their high electrical conductivity coupled with high optical 

transparency (see chapter 2), are robust materials that can be flexible several times with 

minimal deterioration in their electronic properties[5, 25-27], and can be solution 

processed with water. 

In practice carbon nanotubes (CNTs) or single wall carbon nanotubes (SWNTs) 

are easily solution processed through the use of organic solvents or surfactants in DI 

water allowing SWNTs to be deposited onto transparent substrates through vacuum 

filtration[28], ultrasonic spray coating[29], dip coating[27], spin coating[30], and inkjet 

printing[31]. The ability to solution process SWNTs enables them to be deposited onto 

large areas at potentially lower costs than ITO through simpler manufacturing processes. 

Organic solvents that can disperse carbon nanotubes, most notably, N,N-

dimethylformamide (DMF) and dimethyl pyrrolidone (NMP) [32], are highly flammable 

and toxic and thus dispersion of carbon nanotubes in water through the use of surfactants 

is generally preferred [20]. In Figure 1.7a and b SWNT powder and solution processed 

SWNT “ink” are presented, respectively.  

 

   

Figure 1.7 (a) P3-SWNT powder from Carbon Solutions. (b) Solution processed SWNT 

ink. Taken from reference [20]. 

(a) (b) 
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Though surfactants are great for dispersing SWNTs, surfactants are electrically 

insulating, limit tube-to-tube contact, limit chemical doping, and increase optical 

absorption, thereby decreasing the overall performance of carbon based nanomaterial 

transparent electrodes. Fortunately, surfactants can be removed through nitric acid 

treatment and/or thermal treatment in an inert environment (e.g. argon). However, it 

needs to be determined how treatments to remove surfactants are connected to other 

electrical aspects; and if the removal of surfactants is beneficial or detrimental to SWNT 

electrodes. For this reason, the removal of surfactants through nitric acid treatment and 

annealing in inert argon environment are investigated in this work. 

In practice large-area pristine graphene it is difficult to obtain and to deposit onto 

transparent substrates. Current techniques for synthesizing graphene include graphene 

oxide[33], exfoliated graphite via graphite intercalation compounds and thermal 

shock[34], density gradient ultracentrifuged graphene[35], and chemical vapor deposition 

grown graphene [36]. Currently as-synthesized graphene sheets are plagued by numerous 

defect sites that act as potential barriers that hinder charge transport. However, it has been 

recently shown that graphene SWNT composite electrodes can be used to dramatically 

improve the electrical performance of SWNT electrodes with minimal sacrifices in 

optical transmittances[25]. Therefore, large-area pristine graphene is not necessary to 

produce high performing transparent electrodes. As such carbon nanotube graphene 

composite transparent conductive electrodes are studied in this work as well. 

1.4 Research Goals 

Though carbon based nanomaterials are promising candidates as transparent 

electrodes, there are outstanding problems that need to be addressed before the 

fabrication of large scale (1cm2) transparent electrodes that meet or exceed the minimum 

industry standard (MIS) of <100Ω/sq coupled with an optical transmittance >90% at a 

wavelength of 550 nm are realized. To this end, the goal of this thesis is to add to the 
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fundamental understanding of the physics involved with the removal of surfactants for 

solution processed SWNT and graphene electrodes through thermal and chemical 

treatments, both at the nanoscale and at the macroscale; and to investigate the potential of 

graphene SWNT composites as high performing transparent electrodes. For carbon 

nanotube electrodes, solution processed arc discharge as-synthesized mixed SWNTs 

(~2/3 semiconducting and ~1/3 metallic), type-sorted metallic SWNTs, and type-sorted 

semiconducting SWNTs will be utilized for surfactant removal studies. For graphene 

electrodes, graphene oxide, ultracentrifuged graphene solutions, and chemical vapor 

deposition (CVD) grown graphene will be utilized. Graphene oxide and CVD grown 

graphene will be investigated with regards to their potential as viable sources of graphene 

for high performing large area composite transparent electrodes. In addition, carbon 

based nanomaterial electrodes will be characterized and analyzed with regards to their 

global and individual materials properties that comprise the nanotube and graphene 

networks. 

The thesis format will be as follows: Chapter 2 will provide a literature review on 

carbon nanotube transparent electrodes, present the state of the art for CNT electrodes, 

and discuss relevant theory for electrical conduction in carbon nanotube electrodes. 

Chapter 3 will discuss the experimental methodology utilized in this work. Chapters 4-5 

represent the research contribution from this work. Chapter 4 will investigate the removal 

of surfactants and the effects on the optoelectronic properties of SWNT electrodes. 

Chapter 5 will study carbon nanotube graphene composite electrodes and briefly present 

the state of the art in graphene and carbon nanotube graphene composites prior to 

presenting experimental results. Chapter 6 will discuss conclusions and future work. In 

particular: 

 Chapter 4 will investigate the impact of surfactant removal on electrode 

performance at both the nanoscale and macroscale. The nanoscale impacts on 

electrode performance will be investigated through the use of conductive-tip 
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atomic force microscopy measurements. At the macroscale the impact of 

surfactant removal on electrode performance will be investigated through the 

characterization of the optoelectronic properties (sheet resistance and optical 

transmittance). This chapter focuses on the impact of surfactant removal on single 

wall carbon nanotubes (SWNTs), with a slight deviation to investigate the 

removal of the surfactant sodium cholate with density gradient ultracentrifuged 

graphene.  

 Chapter 5 will investigate the potential of graphene SWNT composite electrodes 

as high performing transparent electrodes. To this end, the optoelectronic 

properties and structural quality of as-made and annealed graphene oxide SWNT 

composites electrodes where characterized. Comparisons will be done with as-

made and annealed SWNT electrodes to understand the individual effects on 

graphene oxide and SWNTs after thermal treatments at temperatures of 1000°C. 

Furthermore, the optoelectronic properties of a chemical vapor deposition grown 

graphene M-SWNT electrode will be characterized to investigate improvements 

in electrical performance associated with the composite electrode.  

 Chapter 6 presents a summary of the research contributions, conclusions made, 

and discusses future work. Particularly, annealing studies of SWNTs in controlled 

oxygen environments are discussed as a potential method to simultaneously 

increase the optical transmittance, heal defects, and reduce the sheet resistance of 

metallic carbon nanotube electrodes.  
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CHAPTER 2 : ELECTRICAL CONDUCTION IN CARBON 

NANOTUBE TRANSPARENT ELECTRODES 

2.1 Figures of Merit of Transparent Conductive Electrodes 

 There are two primary figures of merit used to characterize transparent electrodes, 

which include sheet resistance and optical transmittance at a wavelength of 550nm. A 

secondary figure of merit, specific for carbon nanotubes and graphene, is to evaluate the 

structural quality of carbon based nanomaterial transparent electrodes through the 

graphitic to defect intensity ratio (IG/ID) obtained from Raman spectroscopy. 

2.1.1 Sheet Resistance and Optical Transmittance 

The primary figures of merit, sheet resistance and transmittance are related to one 

another and for this reason they will be discussed jointly. For this discussion of sheet 

resistance (Rsh) and transmittance, the effects of chemical doping, removal of surfactants, 

healing of defects through thermal treatments, or the development of composite films is 

not yet considered. 

To begin, the efficiency/efficacy of organic optoelectronic devices are heavily 

dependent on the ability of a transparent electrode to allow photons to be transmitted 

into/out of the device; and to simultaneously allow electrical current to conduct with 

minimal resistance to minimize resistive power losses[20]. The ability of a transparent 

electrode to allow photons to be transmitted through the device can be evaluated through 

optical transmittance measurements via UV-Vis-NIR spectroscopy; and the electrical 

resistance can be measured through the 2D sheet resistance via the transfer length method 

(TLM). For a rectangular sample the 2D sheet resistance is defined in equation 2.1, where 

R is the resistance between two contacts, of width, W, and at a length, L apart. 

 
L

W
RR sh  (2.1) 
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In general to improve the electrical conductivity of thin film electrodes, it is 

necessary to increase the thickness to add percolative pathways through higher surface 

coverage, which consequently decreases the optical transparency of the film[20]. This 

behavior is illustrated in Figure 2.1 for mixed CNTs, where the sheet resistance in Ω/sq is 

plotted versus optical transparency at 520nm and the film thickness is given for selected 

points.  

 

Figure 2.1 Correlation between mixed carbon nanotube electrode transparency 

(represented by the transmittance at 520nm) and sheet resistance. The line is only a guide 

to the eye. Taken from reference [37]. 

Referring to Figure 2.1 it is clear that as the optical transparency decreases the 

sheet resistance decreases as well. However, it is also apparent that the Rsh decreases at a 

lower rate as the films gets progressively darker, thus resulting in a tradeoff between Rsh 

and optical transmittance. The decrease in Rsh can be understood through percolation 

theory, where percolation in this context refers to the ability of a charge to conduct from 

one point to another. When there are insufficient conduction pathways or the so called 

“breaks” in the nanotube network (NTN), a potential barrier is formed. The potential 

barriers present from breaks in the NTN can be thought of as a resistance, as it reduces 

the energy of charged particles which in turn decreases the electrical conductivity of the 
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NTN. When a NTN has enough percolative paths for charges to travel through, it is said 

to have reached the percolation threshold[38]. This concept is illustrated in Figure 2.2, 

where in (a) the NTN has not reached the percolation threshold, (b) the NTN has reached 

the percolation threshold, and (c) the NTN is well above the percolation threshold. 

 

Figure 2.2 (a) SWNT network below the percolation with insufficient percolative 

conduction pathways. (b) SWNT network that has reached the percolation threshold. (c) 

SWNT network well above the percolation threshold, providing several percolation 

pathways. Taken from reference [38]. 

 Due to the percolative nature of NTNs as was discussed above, Rsh varies 

inversely with surface film density. Furthermore, it is obvious that surface film density is 

directly proportional to film thickness. Therefore, it is expected for sheet resistance to 

vary inversely with film thickness. There is a rapid decrease in Rsh when increasing the 

film thicknesses from a highly optical transparent electrode, because of an increase in 

percolative pathways. After the percolation threshold has been reached there is a rapid 

decay in Rsh that eventually reaches a saturation point, as is apparent in Figure 2.1.  

Per the above discussion, it should be noted that a direct comparison of Rsh at two 

different optical transmittances cannot be made and that it is important to always consider 

both sheet resistance and transparency when reading literature. For example, indium tin 

oxide has a Rsh of 100Ω/sq at 90% T and has a Rsh of 10Ω/sq at 80%T. This corresponds 

to a reduction in Rsh by a factor of 10 by simply reducing the optical transmittance. By 

comparison in Figure 2.1 a mixed CNT film produced by E. Koudoumas et al. only has a 

decrease in Rsh by a factor of ~2, when reducing the optical transmittance from 90% to 

80%. Therefore, it is important to note that the rate at which the Rsh decreases as a 
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function of transmittance varies depending on the material and its optical properties. In 

this case, CNTs and graphene are highly absorbing in the visible range with CNT films of 

50nm have transmittances >70%[28] and graphene decreasing the transmittance by ~2.0% 

for every layer of graphene added (see chapter 5, Figure 5.10). Therefore, only a few 

layers of CNTs and graphene are necessary to drop the optical transmittance when 

compared to transparent conductive oxides like ITO that has ~93%T at 100nm film 

thickness[39]. 

Fortunately, it turns out that the transmittance can be related to Rsh through 

equation 2.2 [38] , where Z0 is the impedance of free space, µ0 is the permeability of free 

space, ߳o is the permittivity of free space, σOp is the optical conductivity, and σDC is the 

direct current conductivity. Equation 2.2 can be solved to determine the conductivity ratio 

as shown in equation 2.2. The conductivity ratio, σOp/σDC, is useful to quantify the 

optoelectronic properties of transparent electrodes. As a general rule of thumb a higher 

conductivity ratio corresponds to better optoelectronic properties.  
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2.1.2 Graphitic to Defect Intensity Ratio via Raman Spectroscopy 

In CNTs and graphene there are three significant scattering modes that are present 

in the Raman spectrum including the D-band, G-band, 2D/G'-band as is shown in Figure 

2.3. These scattering modes generally appear at approximate wavenumber or Raman shift 

positions, but can and do vary slightly from sample to sample. The peak position also 

depends on the laser wavelength. 
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Figure 2.3 Raman spectra of graphene presenting the main intensity peaks, which include 

the D-band, the G-band, and the G’-band (commonly referred to as 2D-band). The laser 

excitation energy is 2.41eV, which corresponds to a laser wavelength of 514nm. Taken 

from reference [40]. 

The D-band occurs at ~1350 cm-1 and is generated from the scattering modes of 

structural defects in graphene. Therefore the higher the intensity of the D-band the more 

defects that are present. The G-band occurs at ~1585 cm-1 and is commonly referred to as 

the graphitic peak because this scattering mode is present in most carbon-based materials. 

Therefore, the ratio of the intensity of the G-band and D-band (IG/ID) is used to quantify 

the structural quality of graphene and CNTs. The last significant scattering band is the 

2D-band, it is also commonly referred to as G’-band. The 2D-band is the second overtone 

of the defect band that occurs ~2720 cm-1 through a double resonance scattering 

process[41]. The 2D-band is useful to distinguish between the presences of graphene 

from that of graphite. In graphite there is a shoulder that is present at ~2698 cm-1 and for 

graphene the shoulder is not present (See Figure 3.19 in Chapter 3). 
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2.2 Single Wall Carbon Nanotube Solution Processing 

 Carbon nanotubes are primarily synthesized through the arc-discharge, laser-

ablation, chemical vapor deposition (CVD), and high pressure carbon monoxide (HiPCO) 

methods. Typical batches of synthesized nanotubes are ~2/3 semiconducting and ~1/3 

metallic and as such CNT films that have not been type sorted are referred to as mixed 

CNTs/SWNTs in this thesis. After the carbon nanotubes have been synthesized, they are 

then dispersed in a solvent, typically water, through the use of surfactants such as, 

sodium dodecyl sulfate (SDS) and sodium cholate (SC) with the aid of bath and/or probe 

sonication. This resulting carbon nanotube solution is often referred to as CNT ink.  

The CNT ink is then used to produce optically transparent electrically conductive 

thin films through spin-coating, spray-coating, vacuum filtration, or ink-jet printing. The 

details of the SWNT solution fabrication are discussed more thoroughly in this section. 

However, each of the four CNT synthesizing methods produces CNTs with different tube 

diameters, tube lengths, CNT bundle diameters, and number of nanotube shells[42]. As a 

result the four synthesis methods have variations in the quality of nanotubes produced. 

Therefore it is important to understand which synthesis method produces the best quality 

CNTs.  

Geng et al. used carbon nanotubes powders synthesized through the four main 

methods to evaluate the differences in the quality of the CNTs produced through each 

method. These CNT powders were dispersed in DI water with SDS and were 

subsequently spray coated onto PET films. The CNT films produced were characterized 

through sheet resistance and optical transmittance at a wavelength of 550nm. Geng et al. 

demonstrated that the arc discharge method is superior as is shown in Figure 2.4 [43]. 

Therefore only arc-discharge grown CNTs will be used and discussed in this work.  
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Figure 2.4 Sheet resistance as a function of transmittance for spray coated CNTs 

produced through the four main synthesis methods. Taken from reference [43]. 

2.2.1 Arc‐Discharge Synthesized Carbon Nanotubes 

In 1991 S. Iijima first synthesized carbon nanotubes through the use of the arc-

discharge method, where he produced multi-walled carbon nanotubes ranging from 2 to 

50 walls [44]. A schematic of the arc discharge method is shown in Figure 2.5. The arc-

discharge method is performed in a reaction vessel that is filled with an inert gas, such as 

helium or argon, at a controlled pressure ranging from 100-500 torr [45]. Two graphitic 

rods are then placed inside the vessel were the smaller rod serves as the anode and the 

larger rod serves as the cathode. A potential is then applied across the graphitic rods and 

as the rods are pushed closer together to a distance of ~1mm, a current of ~100A passes 

through the rods creating a discharge that forms a plasma[45]. 

As the anode is vaporized by the plasma, carbon nanotubes along with amorphous 

carbon, C60, and other graphitic nanoparticles are deposited on the cathode. Single wall 

carbon nanotubes (SWNTs) can be grown through the arc discharge method by boring a 

hole in the anode and filling it with pure powdered metals (Fe, Ni, or Co) and Graphite 

[46]. After the synthesis is done, the amorphous carbon, C60, graphitic nanoparticles, and 
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residual catalyst are removed through a purification process, typically involving acid 

treatments with nitric and sulfuric acid.  

 

 

 

 

 

 

Figure 2.5 Schematic of Arc-Discharge Evaporation method to produce CNTs. 

2.2.2 Dispersion of Carbon Nanotubes in Solution via Surfactants 

Due to their chemical structure, pristine carbon nanotubes are non-polar and do 

not readily disperse in aqueous solutions. Furthermore, carbon nanotubes have a high 

affinity for each other, which makes it difficult to disperse them as individual tubes [47]. 

However, through bath and/or probe sonication carbon nanotubes can be dispersed 

through the use of organic solvents or through surfactants in aqueous solutions. Organic 

solvents that can disperse carbon nanotubes, most notably, N,N-dimethylformamide 

(DMF) and dimethyl pyrrolidone (NMP) [32], are highly flammable and toxic and thus 

dispersion of carbon nanotubes in water through the use of surfactants is generally 

preferred [20]. 

Typical surfactants that are used to disperse CNTs include sodium dodecyl sulfate 

(SDS)[48], sodium dodecylbenzene sulfonate (SDBS)[49], sodium cholate (SC)[50], and 

sodium carboxymethyl cellulose (CMC)[29]. CMC is typically used to fabricate CNT 

films through the use of the ultrasonic spray coating technique[29]. In this work, 

successful dispersion of SWNTs has been achieved through the use of SDS, SDBS, and 

SC, which are all anionic surfactants [51]. However, the vast majority of this work has 

used carbon nanotubes solutions dispersed through the use of SDS and SC. The 

Inert Reaction Vessel

Graphitic Rod Graphitic Rod 

Anode + Cathode - 

Plasma Arc

+  - 
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surfactants SDS and SC were studied in particular because they are essential to type sort 

SWNTs by electronic type using the density gradient ultracentrifugation technique. 

SWNT solutions of homogenous electronic type are essential to realize the full potential 

of nanotube electrodes; as will be discussed later in this chapter. The chemical structure 

of SDS, SDBS, and SC are shown in Figure 2.6.  

 

 

Figure 2.6 Chemical Structure of surfactants sodium dodecyl sulfate (SDS), sodium 

dodecylbenzene sulfonate (SDBS), and sodium cholate (SC). Adapted from reference[51]. 

Surfactants are generally organic amphiphilic compounds, which are compounds 

that have a hydrophobic tail and a hydrophilic head. Where the hydrophobic tail adsorbs 

on to the surface of the hydrophobic CNT and the hydrophilic head mixes with water to 

effectively disperse the CNTs with the aid of bath and/or probe sonication. The 

hydrophobic tail is generally neutral and the hydrophilic head may have a charge. In the 

case of the SDS, SDBS, and SC, the charge of the hydrophilic head can be determined by 

referring to the chemical structure of each compound in Figure 2.12. In each compound 

the Na+ atom is attached to an O2- atom, resulting in a net negative charge, thus the term 

anionic surfactants. The significance of this net negative charge is that it provides 

electrostatic repulsion in the carbon nanotubes and thereby counteracts the tendency of 
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CNTs to aggregate[47]. This allows these surfactants to provide SWNT solutions that are 

stable for time frames on the order of months. However, despite the solutions being stable 

the nanotubes will still aggregate with time which eventually leads to increases in 

nanotube bundle diameter. The larger nanotube bundle diameters negatively impacts the 

conductivity of SWNT electrodes. 

Although surfactants are great for dispersing nanotubes, they are not easily 

removed from the nanotube electrodes. This is undesirable because surfactants are 

electrically insulating, limit chemical doping, and increase optical absorption thereby 

decreasing overall performance of TCE films. Methods to remove surfactants and the 

effects it has on SWNTs and graphene will be discussed thoroughly in Chapter 4. 

2.2.3 State of the Art Mixed Carbon Nanotube Electrode Films 

 Using carbon based nanomaterials (CBNs) as transparent electrodes began with 

mixed SWNTs that consisted of batches of ~2/3 semiconducting and ~1/3 metallic 

nanotubes. Wu et al. first reported in 2004 a nitric acid treated mixed SWNT transparent 

electrode produced through the vacuum filtration method with a Rsh of 30Ω/sq with 70% 

optical transmittance in the visible range; this represents the state of the art for mixed 

SWNT films. Geng et al. reported in 2007 sheet resistances of ~40 Ω/sq and 70 Ω/sq at 

70% and 80% transmittances, respectively[42]. Geng et al. also reported the performance 

of mixed CNT as-prepared and acid-treated films as a function of film thickness. The 

findings of Geng et al. along with reported values prior 2007 are plotted in Figure 2.7[42]. 

Geng et al. attribute the exceptional optoelectronic properties of the mixed SWNT 

electrodes to removal of surfactant as was demonstrated in their XPS scans and to 

densification of the films creating an increase in nanotube contacts [42]. 
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Figure 2.7 Previously reported values of sheet resistances of Mixed CNTs as a function 

of transmittance at 550nm. Geng et al. study for as-prepared and acid treated mixed 

CNTs for comparison. Requirements for touch screen (TS) and flat panel display (FPD) 

technologies are plotted as well. Taken from reference [42]. 

It is pointed out that Chhowalla [52, 53] and Grüner [38, 54] used two probe 

methods. While Geng et al. [42], Roth [55, 56], Rinzler [28], Yoo [57], Manohar [26], 

and Zhou [58] used four-point probe methods. While not invalidating their results, the 

two and four point probe measurement techniques are far less reliable and reproducible 

than the transfer length method (TLM). The details of the two probe, four-point probe can 

be found in appendix B; and the transfer length method will be discussed in Chapter 3. 

In 2008, Jackson et al. using the TLM reported a value of 105Ω/sq with 80%T at 

550nm for a mixed SWNT film that was doped with HNO3 and subsequently doped with 

SOCl2 [59]. Though the optoelectronic properties reported by Jackson et al. are less 

conductive than 70Ω/sq it is likely a more accurate measure of the state of the art for 

mixed CNT films, due to the use of a more reliable TLM measurement technique. 
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2.3 Type Sorted Carbon Nanotubes 

 To fully realize the electrical properties of carbon nanotubes, homogeneous CNT 

batches of one electronic type (i.e. metallic or semiconducting) are needed as Schottky 

barriers form at metallic-semiconducting nanotube heterojunctions. These Schottky 

barriers make it difficult for charges to conduct in nanotube networks and as a result the 

electrical performance, specifically sheet resistance, is negatively impacted. As 

synthesized carbon nanotubes are ~1/3 metallic and ~2/3 semiconducting; and methods to 

synthesize nanotubes of one electronic type have not yet been realized. As such intense 

research has been done in type sorting SWNTs including separation techniques such as 

selective destruction[60], selective chemistry[61], and density gradient 

ultracentrifugation[62]. Currently the most promising technique is density gradient 

ultracentrifugation (DGUC) and type sorted nanotubes are commercially available 

through the company Nanointegris.  

By using combinations of the surfactants sodium dodecyl sulfate and sodium 

cholate SWNTs can be optimally sorted through the use of density gradients by 

exploiting differences in the mass per volume buoyant densities of SWNTs of different 

structures [62, 63]. As the nanotubes are ultracentrifuged, the centripetal forces cause the 

nanotubes to sediment to their respective buoyant densities. This process is illustrated in 

Figure 2.8 
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Figure 2.8 (a) Schematic of surfactant-encapsulated SWNTs. The chiral vector and 

diameters of three specific SWNTs are identified. (b) Schematics and photographs of an 

ultracentrifuge tube at four points in the DGU process. Taken from reference [63]. 

2.3.1 State of the Art Metallic and Semiconducting Nanotube Electrodes 

 Green et al. type sorted high pressure carbon monoxide (HiPCO) SWNTs and 

compared the optoelectronic properties of M-SWNT vs. unsorted SWNT in the visible 

and infrared ranges. The results of Green et al. are presented in Figure 2.9, where type 

sorted M-SWNTs showed an improvement in the inverse of the conductivity ratios, 

σOP/σDC, by factors in excess of 5.6 in the visible range and up to 10 in the infrared 

range[64]. Recently, Lu et al. reported a Rsh less than 100Ω/sq with 80% T at 550nm for 

arc-discharge type sorted M-SWNT [65]. 

(a) 

(b) 
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Figure 2.9 Comparison of optoelectronic properties of HiPCO sorted M-SWNT vs 

unsorted material SWNT in the visible and infrared range. Red diamonds and blue 

squares correspond to M-SWNTs with principal diameters of 0.9nm and 1.0nm, 

respectively. Taken from reference [64]. 

 M-SWNTs are intuitively thought to have superior optoelectronic properties than 

Sc-SWNTs. However, Blackburn et al. reported values of 920Ω/sq and 180 Ω/sq for 

thionyl chloride doped 94% metallic and 94% semiconducting SWNTs films. The 

average transmittance was calculated for the range of 400nm-2000nm resulting in 80%T 

and 76%T for M-SWNT and Sc-SWNT, respectively[66]. Jackson et al. confirmed the 

results of Blackburn et al. by demonstrating a Rsh of 76 Ω/sq and 60 Ω/sq for M-SWNT 

and Sc-SWNT films, respectively, with 70% transmittances at 550nm [67]. 

The superior performance of highly doped Sc-SWNTs over M-SWNTs can be 

understood through the density of states for M-SWNT and Sc-SWNT (See Appendix A, 

Figure A.6). Hole doping with HNO3 and SOCl2 effectively shifts the Fermi-level in the 

valence band for Sc-SWNTs below the second van hove singularity(S22), but only shifts 

the Fermi level just above the first van hove singularity (M11) for M-SWNTs [66, 67]. 
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The significance of this shift is that there is a larger density of electronic states near the 

Fermi level in the valence band for Sc-SWNT than M-SWNT. This concept is illustrated 

in Figure 2.10 

 

Figure 2.10 (a) (11,10) Sc-SWNT DOS after being doped with HNO3 and SOCl2. (b) 

(10,10) M-SWNT DOS after being doped with HNO3 and SOCl2. Taken from reference 

[67]. 

2.4 Doping of Carbon Nanotubes 

Jackson et al. showed that CNTs can be optimally p-doped through intercalation 

and nucleophillic substitution of carboxylic acids with acyl chlorides via nitric acid and 

thionyl chloride treatment, respectively[59]. P-doping through intercalation and 

nucleophillic substitution of carboxylic acids with acyl chlorides is discussed in more 

detail below.  

2.4.1 Doping through Intercalation via Nitric Acid Treatment 

Bower et al. found an expansion in the inter-nanotube spacing by 1.85Å through 

the use of X-ray diffraction and nuclear magnetic resonance spectroscopy, which strongly 

(b) 

(a) 
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suggests intercalation of the HNO3 molecules in the SWNT bundles [68]. Furthermore, 

Bower et al. demonstrated that a HNO3 molecule can easily nest in between SWNTs in 

their “Simple space filling model of the SWNT unit cell”, as shown in Figure 2.11 [68]. 

Doping through intercalation has been shown to p-dope SWNT by effectively shifting the 

Fermi level downwards [69]. 

 

Figure 2.11 A simple space filling model of the SWNT unit cell, where an HNO3 

molecule can easily nest in between nanotubes at interstitial sites. Taken from reference 

[68] 

  2.4.2 Doping through Nucleophillic Substitution 

Carbon nanotubes used in this work are bought from Carbon Solutions for mixed 

SWNTs and from Nanointegris for type sorted SWNTs. The nanotubes that are bought 

are functionalized with carboxylic acids at the tips of the CNTs and at defects sites 

through the use of strong oxidizing acids such as H2SO4 [70]. Jackson et al. used thionyl 

chloride (SOCl2) to p-dope carbon nanotubes through nucleophillic substitution of 

carboxylic acid groups with acyl chlorides [59]. Nucleophillic substitution occurs since 

the acyl chlorides have an electronegativity of 3.16 which is higher than the 

electronegativity of the hydroxyl group which is 2.75. The process of nucleophillic 

substitution is shown in Figure 2.12. The more electronegative chlorine pulls more 

electrons than the hydroxyl group does, because it is more electronegative and as a result 

the CNT is hole-doped from the loss of the electrons in the valence band. This effectively 

shifts the Fermi level down. It is also possible to p-dope a CNTs even further through 
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Nucleophillic substitution by using a more electronegative chemical such as Fluorine 

with an electronegativity of 3.98. 

 

Figure 2.12 Nucleophillic substitution of carboxylic acid groups on the sidewalls and tips 

of the SWNT with acyl chlorides via chemical treatment with SOCl2. Taken from 

reference [59]. 

2.5 Optoelectronic Properties of Carbon Based Nanomaterials 

The figures of merit utilized to characterize transparent electrodes have been 

discussed, as well as how SWNTs are synthesized, solution processed, and doped. 

Moreover, the state-of-the-art carbon nanotube electrodes were presented as well. It is 

now of interest to understand how the material properties of carbon nanotubes (and 

graphene) contribute to their electronic performance. Then the next section will expand 

upon this knowledge and discuss electrical conduction in nanotube networks.  

Graphene is a one-atom thick sheet of sp2 bonded carbon atoms arranged in a 

honeycomb lattice structure[71, 72] and is the basic structural element for carbon 

allotropes including buckyballs[73], carbon nanotubes[44], and graphite[74] as is shown 

in Figure 2.13. Graphene and single walled carbon nanotubes (SWNTs) have been the 

topic of intense research, because of their remarkable electronic, optical, mechanical, and 

thermal properties[75]. Of these, the electronic properties have received the most 
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attention with application towards next generation field effect transistors[76], RF 

devices[77], sensors[78, 79], and transparent electrodes[28]. 

 

Figure 2.13 Graphene and its allotropes, including buckyballs, carbon nanotubes, and 

graphite. Taken from reference [74]. 

The electronic properties of graphene sheet and SWNTs, most notably include a 

mobility of charge carriers of ~200,000cm2V-1s-1 [80] and ~100,000cm2V-1s-1 [81], 

respectively. The carrier mobilities of common semiconductors include silicon with 

1400cm2V-1s-1 and 480cm2V-1s-1 electron and hole mobilities, respectively[82]; 

Germanium at 3800cm2V-1s-1  and 1820cm2V-1s-1 electron and hole mobilities, 

respectively[83]; Gallium Arsenide with carrier mobilities of 7000-10,000cm2V-1s-1[84]. 

Therefore, the charge carrier mobilities of graphene and SWNTs are relatively high. 

The significance of the mobility of charge carriers, μ, is that it has a direct impact 

on the direct current conductivity, σDC. For n-doped graphene and SWNTs transparent 

electrodes σDC is determined by equation 2.4, where n is the charge carrier density, and e 

is the electron charge.  

  neDC  (2.4) 

To maximize the conductivity, the three individual components contributions to 

σDC are discussed. First, the electron charge is a universal constant that is common for all 

materials, the mobility of charge carriers is an intrinsic property of a material, and the 

charge carrier density can be increased via hole doping for graphene[2] and SWNTs [85]. 
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Therefore, considering that the charge carrier density can be controlled via hole-doping 

(typically achieved via chemical doping) and that electron charge is constant, obtaining a 

material with the highest mobility of charge carriers is desirable to maximize electrical 

conductivity. However, chemical doping is not without its consequences as it introduces 

defects and thereby dramatically reduces the charge carrier mobility. As such a balance 

between the positive and negative aspects of doping need to be considered when 

discussing charge carrier mobility. Nonetheless, if care is taken high charge carrier 

mobilities are attainable[2]. Furthermore, the charge carrier mobility can be related to the 

primary figure of merit sheet resistance by considering the definition of Rsh as presented 

in equation 2.5, where ρ is the resistivity and t is the film thickness. Recalling that the 

σDC , is simply 1/ρ, equation 2.5 can be rewritten to yield equation 2.6. Substitution of 

equation 2.4 into equation 2.6 yields equation 2.7. Therefore it is seen that the charge 

carrier mobility is inversely proportional to the sheet resistance. Thus, the relatively high 

mobility of charge carriers for graphene and SWNTs make it an attractive material for 

transparent electrode applications.  
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The electronic properties of carbon based nanomaterials have been considered, 

but in order for CBNs to qualify as viable transparent electrodes, their optical properties 

must be considered as well. The transmittance, T, of a thin film can be related by the 

optical conductivity, σOp, just as Rsh can be related to σDC, as is shown in equation 2.8 [2, 

38]. Where the impedance of free space, Z0, is related to the permeability of free space, 

μ0 , and the permittivity of free space, 0  as is also presented in equation 2.8. Combining 

equations 2.6 and 2.8 yields equation 2.9, where a figure of merit, the conductivity ratio 
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σDC/σOp, arises that correlates the transmittance and the sheet resistance. Equation 2.9 can 

be solved for in terms of the conductivity ratio as was presented in equation 2.3. 
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 The conductivity ratio is an overall evaluation of the optoelectronic properties of 

CBN electrodes and higher conductivity ratios represent better optoelectronic properties. 

The minimum industry standard presented in chapter 1, Rsh of 100Ω/sq coupled with 90% 

optical transparency, can be expressed as a conductivity ratio of ~35. At this point it is 

seen that the electronic properties of graphene (μ) are favorable over those of SWNTs. 

However, SWNTs have a maximum obtainable conductivity ratio of ~35, whereas 

graphene’s as-made conductivity ratio is ~11[2]. This discrepancy can be understood by 

comparing the optical properties (i.e. σOp) of graphene and SWNTs, where the optical 

conductivities are 1.8 x 105 S/m [2] and 1.7 x 104 S/m [2], respectively. Graphene’s high 

optical conductivity is the reason for its lower as-made conductivity ratio of ~11 than 

SWNTs. Though SWNTs have been shown to meet the minimum industry for transparent 

electrode adoption, it is far short of the more stringent optoelectronic properties required 

for flat panel display (Rsh of 10Ω/sq coupled with 85%T) corresponding to a conductivity 

ratio of 220[2]. However, De et al. showed that theoretically, highly doped graphene can 

have a conductivity ratio as high as 330, which is high enough for most transparent 

electrode applications [2].Therefore, the remarkable electronic properties of graphene and 

SWNTs allow these carbon based nanomaterials to be engineered as high performing 

transparent electrodes that in the future may meet or exceed the minimum industry 

standard and the more stringent standard for flat panel displays. 
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2.6 Interparticle and Intraparticle Resistances 

The goal of this section is to give a brief introduction to the competing effects 

between interparticle resistances associated with the removal of insulating surfactants that 

effectively improve electrical conductivity; and the intraparticle resistances associated 

with the removal of surface function groups through thermal annealing that effectively 

degrade electrical conductivity. The total sum of the intraparticle and interparticle 

interactions gives rise to the global 2-dimensional sheet resistances, which are heavily 

utilized in this thesis to characterize electrical performance of electrodes. The concept of 

interparticle and intraparticle resistances is particularly useful for solution deposited 

carbon based nanomaterials (CBNs), which result in a morphology of randomly oriented 

conductive networks. It should be noted that in this work that solution processed CBN 

electrodes were vacuum filtered, this technique is discussed in section 3.3. 

2.6.1 Interparticle Resistances of Carbon Nanotubes 

Individual carbon nanotubes (CNTs) in solution processed CNT electrodes can be 

thought of as 1-dimensional “conducting sticks”[38] that form randomly oriented 

conductive networks, where contacts between tubes may or may not exist. In reality the 

nanotubes seen in scanning electron microscopy (SEM) or atomic force microscopy 

(AFM) images are nanotube bundles due to the individual nanotubes having high affinity 

for one another[47]. For simplicity any references made to nanotubes in a nanotube 

network in this thesis is referring to nanotube bundles. 

Shown in Figure 2.14a is a picture of a vacuum filtered SWNT film. A zoomed 

SEM image of a nanotube network is shown in Figure 2.14b. It can be imagined that as 

the charge carrier conducts through the nanotube network it has an infinite number of 

pathways to conduct through. This concept is illustrated in Figure 2.14c. For example, a 

charge carrier starting at point A, is not limited to but for simplicity, can reach point B 

through either of the outlined paths 1 or 2. 
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Figure 2.14 (a) Vacuum filtered SWNT on glass. The Georgia Tech emblem is presented 

behind the electrode to illustrate its transparency. Taken from reference [67] (b) SEM 

image of nanotube network at 41,300x magnification [86]. (c) SWNT network with 

continuous conduction pathway for electrons to travel through. 

 As the charge carrier travels from point A to B it must find nanotube intercalation 

pathways to conduct through to reach its destination at point B. The lack of nanotube 

intercalation pathways present a significant potential barrier that the charge must 

overcome to electrically conduct. Thereby increasing interparticle resistance and 

degrading the electrical conductivity of the nanotube network (NTN). Therefore, it is 

ideal for a nanotube network to have high enough surface coverage such that the 

percolation threshold has been reached, as was discussed in the section 2.1, to minimize 

interparticle resistances. 

In nanotube networks (NTN) surfactants also contribute to interparticle resistance 

due to their insulating nature and by limiting nanotube-nanotube contact. However, 

surfactants are necessary to disperse nanotubes into water. A surfactant is an organic 

amphiphilic compound that has a hydrophobic tail and a hydrophilic head (See Section 

(b) (c) 

A

B

Charge Carrier Path 1 

Charge Carrier Path 2 

- 
-

(a) 
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2.4.2). As is demonstrated in Figure 2.15a the hydrophobic tail adsorbs onto the surface 

of the nanotube and the hydrophilic tail interacts with water molecules to disperse CNTs 

in water. As an example, the surfactant sodium dodecyl sulfate (SDS) typically adsorbs 

onto the nanotube in a structureless manner[47]. It can then be imagined that as a charge 

carrier travels through the CNT it has to “hop” to another CNT at the nanotube-nanotube 

contact as is presented in Figure 2.15b.  

 

 

 

 

 
Figure 2.15 (a) Structureless surfactant adsorbed onto the surface of a carbon nanotube. 

Taken from reference [47]. (b) Schematic of a charge conducting through a nanotube and 

encountering surfactant that creates a potential barrier for the charge to hop onto the 

connecting nanotube. 

The insulating surfactant presents a potential barrier that the charge carrier must 

overcome to conduct through the nanotube network. If the charge carrier in Figure 2.15b 

has sufficient energy to overcome the barrier it will “hop” over the barrier, resulting in a 

loss in energy. If the charge does not have enough energy to overcome the barrier, 

quantum mechanics predicts that the charge has a nonzero probability to pass through the 

barrier, or “tunnel” through it. This phenomena is known as tunneling, which also results 

in a loss in energy of the charged particle. In either case, the nanotube network will 

experience an increase in interparticle resistance. Therefore, it is desirable to remove 

insulating surfactants as will be investigated in chapter 4. 

It also noted that carbon nanotubes are not all of the same electronic type [87]. 

CNTs can be either metallic or semiconducting depending on the wrap angle in which it 

is rolled (See Appendix A). Contact between carbon nanotubes of heterogeneous 

electronic type form potential barriers, formally known as Schottky barriers, φb, which 

(a) (b) 

Potential Barrier

Charge Carrier

-
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are produced through a mismatch in work functions[20, 62]. These potential barriers 

again have a negative impact on the interparticle resistance.  

As synthesized single wall carbon nanotubes (SWNTs) typically have a 

concentration of ~2/3 semiconducting single wall carbon nanotubes (Sc-SWNTs) and 

~1/3 metallic single wall carbon nanotubes (M-SWNTs). Expanding upon Figure 2.14, 

the intrinsic optimal conduction pathway for a charge carrier to conduct through in the 

NTN would be through the metallic nanotubes (colored green) as shown in Figure 2.16. 

However, Sc-SWNTs can be p-doped through chemical treatment to exhibit metallic-like 

behavior[66]. This chemical doping adds highly conductive pathways for charge carriers 

to conduct through in the nanotube network thereby reducing interparticle resistance. In 

summary, to minimize interparticle resistances it is desirable to have sufficient surface 

area coverage in the NTN such that the percolation threshold has been reached; to remove 

insulating surfactants; to have nanotube networks of homogeneous electronic type; and to 

dope Sc-SWNT nanotube to have them exhibit metallic behavior to add highly 

conductive percolation pathways. 

 

 

 

Figure 2.16 Schematic of optimal conduction pathway for a charge carrier to conduct 

through to reach point B when starting from point A. 

2.6.2 Intraparticle Resistances of Carbon Nanotubes 

 The electronic properties of individual nanotubes are governed by the nanotubes 

electronic density of states. Examples of the metallic SWNT and semiconducting SWNT 

density of states are presented in Figure 2.17a and b, respectively. Where the intrinsic 

Fermi level, the energy level up to which the density of states are filled of charge carriers 

that are available for electrical conduction, intrinsically lies at 0eV. The singularity points 

BA 
- 

-
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in the DOS for both M-SWNT and Sc-SWNT are called van Hove singularities and the 

distance between mirror van hove singularities are called energy transitions M11, M22, S11, 

S22, and S33 see Figure A.6 in Appendix A.  

 

Figure 2.17(a) Electronic density of states of a (9,0) metallic SWNT. (b) Electronic 

density of states of a (10,0) semiconducting SWNT. Taken from reference [20]. 

The intraparticle resistance of individual carbon nanotubes is determined by 

equation 2.10. Where the charge carrier mobility, μ, is a material property that is 

dependent on structural quality of the individual nanotube and was discussed in the 

previous section; e is the electron charge which is a fixed constant; and finally the density 

of charge carriers, n, can be controlled via chemical doping. 

 ne
R

1
sh   (2.10) 

As purchased SWNTs used in this work were functionalized with carboxylic acid 

groups or surface functional groups that were attached to the ends of nanotubes and at 

defect sites that p-dope SWNTs, see Figure 2.12. The carboxylic acids along with 

adsorbed oxygen dopants on the nanotubes effectively shift the Fermi level downwards 

from its intrinsic position in the SWNT density of states as presented in Figure 2.18. For 

a discussion on the structure of carbon nanotubes and the physics involved to give rise to 

the density of states please see Appendix A.  

Van Hove 
Singularities 

(a) (b) 
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To begin Figure 2.18a and b presents the density of states of as-made 

semiconducting and metallic SWNTs. Where the Fermi level is below 0eV due to hole 

doping from surface functional groups and oxygen dopants. The grey areas in the density 

of states correspond to filled states and the white areas correspond to empty states. In 

order for a nanotube to conduct it has to travel from a filled state to an empty state. The 

as-made Sc-SWNT has relatively little empty states for charges to conduct through. 

Therefore, the majority of the charges will have to overcome an energy gap to reach the 

conduction band, where there are empty states for the charge carriers to conduct.  

Hole doping is advantageous for Sc-SWNTs as it removes electrons in the valence 

band leaving more empty states for charges to conduct through as shown Figure 2.18c. 

Alternatively, p-doping can be thought of as increasing the density of charge carriers (n) 

in the individual nanotubes and thereby decreasing the intraparticle resistance defined in 

equation 2.10. This presents negligible resistance for charge carriers to conduct in the 

valence band of the Sc-SWNTs; until the empty states are filled again by conducting 

charge carriers. This limited zero resistance in the valence band for charge carriers is the 

reason why the semiconducting SWNTs can exhibit “metallic-like behavior” when doped 

to a high degree. By comparison it is seen in Figure 2.18d that M-SWNTs are not 

significantly impacted by hole-doping. However, p-doping (typically HNO3) induces 

defects in carbon nanotubes, which negatively impacts charge carrier mobility (μ). To 

summarize, intra-nanotube resistance is dependent on the electronic type of the CNT, the 

extent to which it is doped, and the structural quality of nanotubes. 
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Figure 2.18 (a) Filled states in as-made Sc-SWNT density of states. (b) Filled States in 

as-made M-SWNT density of states. (c) Filled states in p-doped Sc-SWNT density of 

states. (d) Filled States in p-doped M-SWNT density of states. Adapted from reference 

[20]. 

2.6.3 Global 2D Sheet Resistance in Nanotube Networks 

Sections 2.6.1 and 2.6.2 discussed interparticle and intraparticle resistances in 

nanotube networks (NTNs). This section aims to interconnect the two resistances 

discusses how they sum up to the global 2D sheet resistance, and to motivate why the 

removal of surfactants are important.  

Currently carbon nanotube electrodes have inferior optoelectronic properties to 

indium tin oxide. However, with material optimization the optoelectronic properties of 

SWNTs can be significantly increased[38]. Overall conductance in CNT electrode is 

limited primarily by interparticle resistance which has been reported to be 4 orders of 

magnitude larger than intraparticle resistances[38]. The interparticle resistance that arises 

from the presence of insulating surfactants and Schottky barriers contribute to reducing 

carrier mobilities for individual nanotubes at 100,000cm2V-1s-1 to mobilities as low as 10-

(c) (d) 

(a) (b) 

As-made 

P- Doped 
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100 cm2V-1s-1[38] for nanotube networks (NTNs). This dramatic decrease in charge 

carrier mobility has a direct impact on the sheet resistance of nanotube electrodes recall 

equation 2.7 (   1
sh   tneR  ).  

The presence of Schottky barriers can be lowered through type-sorting nanotubes, 

most notably through density gradient ultracentrifugation[62] with surfactants SDS and 

SC. Furthermore, the removal of surfactants in nanotube electrodes can significantly 

improve electrical conductivity, as the surfactants limit tube to tube contact and present 

potential barriers for charge carriers to overcome when conducting in the NTN.  

Nitric acid has been shown to remove the surfactant sodium dodecyl sulfate 

(SDS), but does not completely remove the surfactant sodium cholate (see Chapter 4, 

section 4.3.2). However, nitric acid (HNO3) treatment on SWNT transparent electrodes 

has been shown to p-dope SWNTs[42]. However, this doping process is not stable as the 

dopants naturally desorb from the nanotubes when exposed to air. Furthermore, treatment 

with concentrated nitric acid has been shown to damage carbon nanotubes by inducing 

defects. The introduction of defects negatively impacts the charge carrier mobility within 

nanotubes and thereby negatively impacting Rsh. In literature, it has been shown that the 

effects of nitric acid by p-doping overall positively affect the 2D sheet resistance, but it is 

of interest to determine if the sheet resistance can be further dropped by employing an 

annealing technique to remove the surfactant sodium cholate. 

Annealing in an inert environment (e.g. argon) up to temperatures of 1000°C, 

have been shown in this work to effectively remove the surfactant SDS and SC to a 

relatively high degree. However, as purchased SWNTs used in this work were 

functionalized with carboxylic acid groups that were attached to the ends of nanotubes 

and at defect sites (see Figure 2.12). These carboxylic acid groups or surface functional 

groups p-dope or hole dope SWNTs. Through thermal annealing it is possible to remove 

surface functional groups and thereby shift the Fermi level back to its intrinsic position. 
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This effectively decreases the density of charge carriers in semiconducting SWNTs and 

thereby lowers the intraparticle resistance, but has a minimal impact on metallic SWNTs. 

This concept is illustrated in Figure 2.19. This brings rise to a competing effect in 

thermally annealed SWNT electrodes between decreases in interparticle resistances 

through the removal of insulating surfactants and increases in the intraparticle resistance 

caused by the removal of surface functional groups. 

 

 

 

 

Figure 2.19 (a) Filled states in as-made Sc-SWNT density of states. (b) Filled States in 

as-made M-SWNT density of states. (c) Filled states in Ar anneal Sc-SWNT density of 

states. (d) Filled States in Ar anneal M-SWNT density of states. 

 

It is expected that M-SWNTs will benefit more from thermal annealing as it is 

relatively insensitive to dedoping effects. While it is expected that Sc-SWNTs will be 

more sensitive to the removal of the surface functional groups. However, it is not know if 

the effect of surfactant removal will dominate over the removal of surface functional 

groups that are attached to the Sc-SWNTs.  

As-made 

Ar Anneal
(c) (d) 

(a) (b) 
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2.7 Conclusion 

This chapter conceptually discussed electrical conduction in carbon nanotube 

transparent conductive electrode that is needed for chapters 3 and 4. A theoretical 

discussion of the structure and development of the density of states of carbon nanotubes 

can be found in appendix A. The important topics covered in this chapter are summarized 

below. 

Section 2.1 discussed the main figure of merits, used to characterize transparent 

electrodes produced in this work; which included sheet resistance, optical transmittance, 

and the graphitic to defect intensity ratio to assess structural quality of SWNTs and 

graphene. Section 2.2 discussed SWNT solution fabrication techniques and presented a 

literature review of the state-of-the-art electrodes for mixed SWNT films. Section 2.3 

presented a literature review of the density gradient ultracentrifugation technique that is 

currently employed by vendor Nanointegris to produce type-sorted SWNTs. Furthermore, 

a literature review of the stat-of-the-art electrodes for M-SWNTs and Sc-SWNTs is 

presented. Section 2.4 discussed p-doping techniques, used to obtain state-of-the-art 

carbon nanotube electrodes. Techniques involving p-doping via HNO3 and SOCl2 

treatment through intercalation of NO3
-
 molecules at interstitial sites and nucleophilic 

substitution of hydroxyl groups with acyl groups on functionalized SWNTs, respectively, 

were discussed.  

Section 2.5 introduced graphene and SWNTs and discussed the importance of its 

material properties, most notably the relatively high mobility of charge carriers of 

~200,000cm-2V-1s-1 [80] and ~100,000cm-2V-1s-1 [81], respectively. Section 2.6 gave a 

brief introduction to the competing effects between interparticle resistances associated 

with the removal of insulating surfactants that effectively improve electrical conductivity; 

and the intraparticle resistances associated with the removal of surface function groups 

through thermal annealing that effectively degrade electrical conductivity. The total sum 
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of the intraparticle and interparticle interactions give rise to the global 2-dimensional 

sheet resistances, which is heavily used in this thesis to characterize electrical 

performance of electrodes. 

 Up to this point the state-of the art for CBNs including mixed SWNTs, metallic 

SWNTs, and Sc-SWNTs that are known to the author have been presented. The state-of 

the-art-films for mixed SWNTs produced by Wu et al. is 30Ω/sq coupled with 70%T, 

which corresponds to a conductivity ratio of 32.2. The current state of the art for M-

SWNTs electrodes was produced by Jackson et al. via p-doping with HNO3 and 

subsequently with SOCl2 doped yielding a conductivity ratio of 12.7 by having 76Ω/sq at 

70%T. The state-of-the-art for Sc-SWNTs electrodes was also produced by Jackson et al. 

via p-doping with HNO3 and subsequently with SOCl2 doped yielding a conductivity 

ratio of 16.1 by having 60Ω/sq at 80%T. 

 Carbon nanotubes optoelectronics properties are currently inferior to indium tin 

oxide. Improving the optoelectronic properties of CNTs is an ongoing effort and 

currently graphene and CNT graphene composites are already offering electrodes with 

extremely competitive electronic properties. As a result, the goal of this thesis is not to 

produce CNT electrodes with high enough conductivity ratios to replace ITO. Rather, the 

goal of this thesis is to have a fundamental understanding of the physics involved with 

the removal of surfactants for solution processed SWNT (and graphene) electrodes, both 

at the nanoscale and at the macroscale, as will be discussed thoroughly in Chapter 4.  

Following up the literature review presented in this chapter, chapter 3 will present 

the experimental methodology employed in this thesis. Chapter 4 will investigate the 

impact of surfactant removal on CNT electrode performance. Chapter 5 will present work 

done with graphene SWNT composites.  
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CHAPTER 3 : EXPERIMENTAL METHODOLOGY 

3.1 Introduction 

 Chapter 2 discussed electrical conduction in carbon nanotube transparent 

conductive electrodes, provided a literature review for mixed SWNTs and type sorted 

SWNTs, and explained why surfactant removal may play a role in limiting electrical 

conduction. Chapter 3 proceeds with discussing the experimental methodology employed 

to fabricate and characterize carbon nanotube transparent electrodes and outlines 

experiments designed to investigate the removal of surfactants in chapter 4. 

3.2 Solution Processed Carbon Nanomaterials 

Solution processed carbon based nanomaterials used in this work include mixed 

SWNTs, metallic SWNTs (M-SWNTs), semiconducting SWNTs (Sc-SWNTs), and 

graphene. Each solution processed carbon based nanomaterial reveals their own 

individual bits of information to understand the impact of surfactant removal on CBNs as 

a whole. To begin a flowchart presenting the surfactants used to disperse each carbon 

based nanomaterial is presented in Figure 3.1. 

 

 

 

 

 

 

 

Figure 3.1 A flowchart of solution processed carbon based nanomaterials presenting the 

surfactants used to solution process the corresponding carbon based nanomaterials. 

Surfactants SDS and SC correspond to sodium dodecyl sulfate and sodium cholate, 

respectively. Mixed SWNTs correspond to as synthesized carbon nanotubes with ~2/3 

semiconducting SWNTs (Sc-SWNTs) and ~1/3 metallic SWNTs (M-SWNTs). 

Mixed SWNT Sc-SWNT M-SWNT Graphene 

Solution Processed Carbon 
Based Nanomaterials

SDS SDS SDS SC SCSC
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3.2.1 Dispersion of Mixed Carbon Nanotubes 

Prior to any experimental work being performed all glassware was thoroughly 

cleaned through subsequent rinsing with acetone, methanol, isopropanol alcohol, and 

deionized water which were followed by thorough drying with an air gun. To prepare 

Mixed SWNTs aqueous solutions, P3-SWNTs in powder form (arc discharge synthesized) 

were purchased from Carbon Solutions, Inc. The P3-SWNTs are purified with nitric acid 

and are highly functionalized with 4-6 atomic % carboxylic acid groups. The P3-SWNTs 

had catalyst impurity content between 5-10 weight % and a carbonaceous purity >90% 

(ratio of SWNTs to all carbonaceous materials). The mean length and diameter of the 

purchased P3-SWNTs are 1µm and 1.4 nm, respectively. 

The purchased P3-SWNT powder (Figure 3.2a) was added to ~0.5% w/v aqueous 

solution of SDS, where typical concentrations of SWNTs were 0.55mg/ml. The SWNT 

solution was sonicated with a VWR 75 bath sonicator for 1 hour, operated at power level 

5, resulting in an approximate sonication power of 45 Watts. The SWNT solution was 

centrifuged with a VWR Galaxy 16D Digital Microcentrifuge for 1 hour at 16,000 x g. 

The centrifugation process forced residual metal catalysts, impurities, and large 

undissolved SWNT aggregates to the bottom of the centrifuge tube. After the 

centrifugation process finished, the top ~75% of solution was carefully decanted and the 

bottom 25% was discarded. The new solution underwent an additional sonication and 

centrifugation step, were again only the top 75% of solution was used. The second 

sonication step was done to disperse any undissolved SWNT and to decrease the SWNT 

bundle size. The second centrifugation step was done to further remove residual 

impurities and large SWNT aggregates. The final SWNT solution is shown in Figure 3.2b 

   
Figure 3.2 (a) P3-SWNT powder purchased from Carbon Solutions, Inc. (b) Dispersed 

P3-SWNT solution. 

(a) (b) 
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3.2.2 Metallic and Semiconducting SWNT Electrodes 

Metallic and semiconducting SWNT electrodes were prepared from solutions 

purchased from Nanointegris. The M-SWNT and Sc-SWNT electrodes contained 

electronic type purity of >95% as specified by Nanointegris. For the M-SWNT solutions 

the remaining <4% corresponded to Sc-SWNTs and vice versa. The SWNT solutions 

purchased from Nanointegris had a mean diameter of 1.4nm and a mean length of ~1μm. 

The type sorted solution were vacuum filtered as will be explained in section 3.3. 

Examples of vacuum filtered Sc-SWNT and M-SWNT solutions are presented in Figure 

3.3 b and d, respectively. 

  
 

    
 

Figure 3.3 (a) Picture of type sorted >95% Sc-SWNT solution purchased from 

Nanointegris. (b) Vacuum filtered Sc-SWNT electrode. (c) Picture of type sorted >95% 

M-SWNT solution purchased from Nanointegris. (d) Vacuum filtered M-SWNT 

electrode. 

3.2.3 Research Grade Graphene Puresheets Electrodes 

Graphene puresheets research grade solution was purchased from Nanointegris. 

The graphene puresheets solution is specified by Nanointegris to have 27% single layer 

content, 48% double layer content, 20% triple layer content, and 5% four plus layer 

content. The average graphene flake size is specified to be 10,000nm2. In Figure 3.4 a 

(c) (a) 

(d) (b) 
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picture of the graphene puresheets solution utilized for this work. The graphene 

puresheets were vacuum filtered and an example of a vacuum filtered graphene 

puresheets electrode is presented in Figure 3.4b. 

       

Figure 3.4 (a) Picture of Graphene Puresheets Research Grade solution purchased from 

Nanointegris. (b) Vacuum filtered Graphene Puresheets electrode. 

3.3 Vacuum Filtration 

Carbon nanotube transparent electrodes were first prepared by Wu et al. through 

the use of the vacuum filtration method[28], this vacuum filtration technique was later 

employed for other carbon based nanomaterials (CBNs) including graphene oxide and 

solution processed graphene. It should be noted that processing conditions and the 

presence of contaminants have a profound impact on the quality of the CBN electrodes 

produced. For a thorough discussion on this topic see Appendix C. 

To prepare CBN transparent electrodes, first the processed CBN solution was 

diluted with 30ml of DI water. In a separate beaker, 1 ml of 0.5% w/v SDS in DI water 

was also diluted in 30ml of DI water. The diluted CBN solution and 0.5% w/v SDS in DI 

water were bath sonicated for 2 minutes at power level 5. A minimal sonication time was 

done to avoid structural damage to the carbon based nanomaterials. Next, a Millipore 

mixed cellulose ester (MCE) filter membrane was rinsed with 60ml of DI water. The 

(a) 

(b) 
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MCE filter membrane had a 47mm diameter and a pore size of 0.1µm. The rinsed MCE 

membrane was then placed on the center of the glass frit surface, see Figure 3.5a. 

Subsequently, the diluted 0.5% w/v SDS solution was vacuum filtered (vacuum powered 

via 1/8hp vacuum pump) through the top (shiny) face of the MCE membrane to prepare 

the membrane for filtration of the CBN solution (setup shown in Figure 3.5b). Afterwards, 

the diluted CBN solution was vacuum filtered through the MCE filter membrane to form 

a CBN thin film on top of the membrane (Figure 3.5c). Vacuum filtering through the 

bottom (dull) face or not preparing the membrane, resulted in a nonuniform, low quality 

CBN electrode.  

   

Figure 3.5 (a) Picture of vacuum filtration setup. (c) Glass frit where MCE membrane is 

placed on top of. (c) Vacuum filtered SWNT on MCE membrane. 

The vacuum filtered CBN film was then heated at 70°C until dry (~10 minutes) 

and rinsed with 60ml of DI water to partially remove surfactants on CBN electrodes. It 

must be noted that the CBN electrode on the MCE membrane could only be rinsed after 

the film had completely dried. Rinsing prior to the CBN electrode completely drying 

would compromise the integrity of the film by creating splotches in the film. Allowing 

the film to completely dry allows time for the van der Waals forces to develop and bind 

together the CBN electrode network. The rinsed CBN film was placed on the center of 

the glass frit again and 60ml of DI water were vacuum filtered to further remove 

surfactants. The thoroughly rinsed CBN film was again heated at 70°C until dry.  

(a) (b) (c) 
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  3.3.1 Film Transfer Process 

Due to the random morphology of CBN electrodes produced through the vacuum 

filtration technique, there is non-negligible variability from film to film. To minimize this 

variability, films were typically cut in half before or after being transferred. One half of 

the electrode was used as baseline to compare against the other half. 

To begin transferring the CBN film from the MCE membrane to a transparent 

substrate, the CBN film was first thoroughly cleaned with IPA to remove dust particles or 

possible contaminants from the lab. The wet CBN film was then carefully placed on top 

of a clean transparent substrate, typically glass, quartz, or fused silica. The wet CBN 

electrode on the transparent substrate was again thoroughly soaked with IPA and firmly 

pressed onto the transparent substrate to promote adhesion, as shown in Figure 3.6a. The 

well adhered CBN film, while still wet, was swiftly placed on top of an acetone vapor 

bath to begin dissolution of the membrane, as shown in Figure 3.6b. Once the MCE 

membrane became transparent the CBN film was placed at a 45° angle face up in an 

acetone bath for ~7 minutes (Figure 3.6c), removed vertically, and placed on top of a hot 

plate at 60°C for ~5 minutes to promote adhesion. 

   

Figure 3.6 (a) SWNT electrode wetted with isopropanol alcohol on top of quartz. (b) 

SWNT electrode placed on top of acetone vapor bath to dissolve MCE membrane. (c) 

SWNT electrode placed in acetone bath to dissolve MCE membrane. 

 

The SWNT film was removed vertically and inserted at a 45° angle to minimize 

buoyancy forces applied onto the SWNT film during immersion. Not removing the 

(a) (b) (c) 
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SWNT film vertically or inserting the SWNT film vertically resulted in the film lifting 

off the substrate. Next, the SWNT film on the transparent substrate was placed in 4 

sequential one hour acetone baths to fully dissolve the MCE membrane. After the SWNT 

film was removed for the first three acetone baths, the films were allowed to air dry 

completely before placing it into the next acetone bath. Not allowing the films to air dry 

completely before placing it into the next acetone caused the wet portions of the electrode 

to lift off the transparent substrate during immersion. Finally, after the last acetone bath 

immersion time finished, the films were carefully and slowly dried with an air or nitrogen 

gun.  

 After the transparent electrodes were produced the optoelectronic properties and 

structural quality were characterized. Section 3.4 discusses a primary figure of merit, 

sheet resistance, Rsh, and the transfer length method (TLM) used to measure it. Section 

3.4 discusses optical transmittance and ultraviolet visible near-infrared spectroscopy 

technique used to characterize it. Section 3.5 discusses how Raman spectroscopy was 

utilized to characterize structural quality of carbon nanotubes and graphene.  

3.4 Sheet Resistance and Contact Resistance 

 Sheet resistance, Rsh, is the 2D analog of bulk resistance, R, which was used to 

measure the resistance of thin films which are approximately uniform in thickness. Recall 

the equation of bulk resistance as shown in equation 3.1. The geometry of a simple 

rectangular thin film is shown in Figure 3.7. The cross-sectional area, Ac , is defined in 

equation 3.2 as is clear from Figure 3.7. By combining equations 3.1, 3.2 and rearranging 

yields equation 3.3, where Rsh is defined as the resistivity, ρ, divided by the film thickness, 

t. It can easily be seen that equation 3.3 is equivalent to equation 2.1 presented in Chapter 

2 to define Rsh. 

 
cA

L
R   (3.1) 
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Figure 3.7 Geometry of a rectangular thin film with uniform thickness. 

 

 WtAc   (3.2) 
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The next concept of importance is contact resistance. Vacuum filtered graphene 

and SWNT films have an inherent surface roughness attributed with them. When contact 

is made between the probe and the transparent electrode, there will only be specific 

points that will make contact. This effect is pronounced in thin films as the lack of 

complete surface coverage reduces the number of contact points. When compared to bulk 

films were there is almost full surface coverage and this contribution is therefore 

typically neglected. Thus, there is a non-negligible contact resistance that is present when 

contact is made with CBN thin films. 

In this work it was found that SWNT films that have desirable transparency are 

typically around 30nm thick. A 50nm SWNT film was reported to have a transmittance 

>70% [28], which is consistent with observations of the thickness of SWNTs done in this 

work. Specifically for SWNTs the transparency in the thin films is due to voids caused by 

a lack of complete surface coverage, this is evident even in a 150nm thick SWNT film as 

shown in the 1.5μm x 1.5 μm AFM scan in Figure 3.8.  

t L 
W



52 
 

 

Figure 3.8 1.5μm x 1.5μm AFM scan of a 150nm thick Mixed SWNT film. Taken from 

reference [28]. 

 In this thesis it was decided to utilize the transfer length method because of its 

repeatability, its ability to accurately determine sheet resistance and contact resistance, 

and ability to detect nonuniformities in the film. Other methods such as the two point and 

the four point probe methods were determined not to be suitable for the experiments 

conducted. A thorough discussion on the two point and four point probe methods along 

with the reasons as to why they were not employed can be found in Appendix B. 

3.4.1 Transfer Length Method 

 The transfer length method (TLM) originally proposed by Shockley[88], is an 

extension of the transmission line method, that allows for the determination of contact 

resistance and avoids the use of geometrical correction factors to calculate the sheet 

resistance of electrodes. In the transfer length method, metallic fingers or contact pads are 

deposited on the transparent electrode to make better contact between the CBN electrode 

and the electrical probe. A schematic of the transfer length method is presented in Figure 

3.9a. In the transfer length method the contact resistance refers to the resistance occurring 

at the metal/electrode interface arising from work function differences between the metal 

and the semiconductor(transparent electrode)[89] as described by Berger. In addition, not 

all of the current traveling through the electrode with resistance, Rsh, transfers through the 

contact resistance at the edge of contact pad; instead some of the current passes through 
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the contact resistance and some of the current continues to travel laterally through the 

electrode at each point[90]. This forms contact resistance branches where the contact 

resistances are in series with the sheet resistance as shown in Figure 3.9b.  

 

 

Figure 3.9 (a) Schematic of the transfer length method used to measure sheet resistance. 

(b) Schematic diagram of metallic contact/electrode interface with circuit model that 

includes resistance and flow of current. Figures a and b were taken from reference [91]. 

 
Per the discussion above contact resistance, Rc, is intrinsically dependent on the contact 

area and geometry. Therefore, it is of common practice to present a specific contact 

resistance, ρc (defined in equation 3.4), where the specific contact resistance is a 

convenient parameter to compare with contacts of varying sizes. 

 scc AR  (3.4) 

 The TLM’s ability to determine the sheet resistance of a transparent electrode is 

based on the concept of the transfer length LT, which is described by Oussalah et al., as 

the characteristic length from the edge of the contact at which 1/e of the current has 

conducted from the semiconductor to the contact[92]. The transfer length is related to the 

specific contact resistance as determined by equation 3.12[90]. 

 
sh

c
T R

L


  (3.5) 

The total resistance measured by making contact with silver metallic fingers at varying 

contact spacings, di , is governed by the equation 3.6[93, 94]. Through this method the 

Metallic Fingers 

Transparent Electrode 
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resistance as function of di can be plotted and the sheet resistance can be approximated 

through a least squares linear fit[93], as shown in Figure 3.10.  

 id
W

R
RR sh

cT 2   (3.6) 

 The least squares linear fit is beneficial as any non-uniformities present in the 

electrode will not exhibit ohmic contact and give a relatively low R2 value. Any TLM 

measurements made that did not exhibit linear behavior were considered invalid. 

 

Figure 3.10 Sample plot obtained from the transfer length method of total resistance 

versus contact spacings. The contact resistance and transfer length are pointed out to 

demonstrate how they can be extracted via TLM. 

 
In Figure 3.10 it is seen that the transfer length is dependent on how the contact 

resistance compares to the sheet resistance. As is the case in Figure 3.10, the sheet 

resistance is large in comparison to the contact resistance resulting in a small transfer 

length such that most of the current travels near the edge of the metal contact. The 

opposite is true, if the contact resistance is large when compared to the sheet resistance 

then there will be a relatively large transfer length such that most of the current does not 

travel near the edge of the contact. It is important to note that the transfer length can 

never exceed the length of the contact pad, L, as shown in Figure 3.9b. Furthermore, due 
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to the number of contact resistance branches produced underneath the electrode metal 

contact, the contact resistance can be thought of as the equivalent resistance of an 

addition length of electrode material[90]. In fact, the contact resistance can be expressed 

as a function of LT, L, Rsh, and W as presented in equation 3.7[89]. Furthermore if L>2LT, 

then equation 3.15 can be simplified into equation 3.8. 

 
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The importance of the transfer length and specific contact resistance can be 

understood when considering the resistive power losses arising from the sheet resistance 

of transparent electrodes. As is the case with silicon based photovoltaics the addition of a 

metallic grid is often incorporated to reduce resistive power losses. Similarly, for organic 

photovoltaics Jackson et al. [20, 91] proposed the incorporation of a metallic grid to 

reduce resistive power losses by using SWNT films as transparent electrode as shown in 

Figure 3.11. Where the idea of using SWNT electrodes can be extended to the use of 

carbon based nanomaterial electrodes. 

 

Figure 3.11 Organic photovoltaic architecture proposed by R. Jackson for incorporating 

metallic grids to reduce resistive power losses. Taken from reference [20]. 
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Jackson et al. estimated the resistive power losses in the proposed organic 

photovoltaic architecture in Figure 3.11 to be governed by equation 3.8[20, 91]; where, 

the metallic finger separation, d was chosen to be 0.4cm to minimize resistive power 

losses due to the sheet resistance of SWNT electrodes. Thus, knowledge of the specific 

contact resistance and transfer length can be valuable parameters to be aware of when 

designing organic photovoltaic devices. 
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Due to time constraints along with specific contact resistances and transfer lengths having 

large variances to the point that it follows a log-normal distribution, instead of a Gaussian 

distribution as shown by Jackson[20], Rc  and LT were not considered in this work. 

3.4.2 Transfer Length Method Experimental Procedures 

In this work, metallic fingers (e.g. silver) were deposited onto the transparent 

electrode via electron beam (E-beam) vapor deposition with the use of shadow masks. 

Silver was chosen as the contact metal because its work function (4.73eV)[95] is close to 

that of Sc-SWNTs (4.6eV) [20], M-SWNTs (4.5eV) [20], mixed SWNTs (4.3eV) [20] 

and graphene (4.66eV)[96], such that ohmic contact is made. However, it should be noted 

that the work function of SWNTs and graphene can be tuned by doping and annealing 

processes. Jackson[20] showed that the work function of nanotubes with a 1.4 nm mean 

diameter can be shifted as low as 4.0eV and as high as 5.0eV[20]. However, in all cases 

ohmic contact was made successfully for all SWNT and graphene films. Similarly for 

graphene it has been shown that its work function can also be shifted by up to ~0.5eV via 

chemical doping[97]. 

The shadow mask defined metallic finger spacings of d1, d2, d3, and d4 at 0.09cm, 

0.29cm,0.49 cm, 0.69cm, respectively. The width and length of the metallic fingers are 1 

cm and 0.1 cm, respectively. The shadow masks were created using cellulose acetate 
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sheets or “transparency slides” and were cut using a Universal Laser Systems M360 laser 

cutter interfaced with AutoCAD2009. 

 It should be noted that if sheet resistance measurements are made directly after 

deposition of the silver lines the current traveling through the transparent electrode will 

spread as shown in Figure 3.12a. Therefore, the transparent electrode has to be “mesa 

etched” as shown in Figure 3.12 b so that current does not spread. In this work, the sides 

of the CBN electrodes that were not desired for TLM measurements were simply scraped 

away with a razor blade since the films are extremely thin as shown in Figure 3.12c. 

 

Figure 3.12 (a) Non mesa etched transparent electrode film that has current spreading 

contributing to experimental error. (b) Mesa etched transparent electrode that does not 

experience current spreading thus resulting in more accurate measurements. (c) Example 

of mesa etched as made M-SWNT electrode with silver contact fingers deposited. 

3.5 Ultraviolet­Visible­Near­Infrared Spectroscopy 

 Optical transmittance of CBN transparent electrodes was measured through 

ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy. In UV-Vis-NIR 

spectroscopy a detector measures the intensity of light, I, after it has passed through a 

sample and compares it with the initial intensity of light, I0, before it passed through the 

sample. The ratio I/I0 is known as the optical transmittance of the sample and typically 

presented as %T.  

Generally a reference sample is used to account for a slight lost in intensity of 

light due to the sample holder or the transparent substrate, which is typically glass, quartz, 

or fused silica. In this case, the intensity measured after light has passed through the 

transparent substrate is taken as the initial intensity Io. UV-Vis-NIR spectra are typically 

(a) (b) (c) 
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presented as optical transmittance as a function of wavelength. Where the wavelength of 

light can easily be extracted from the equation for energy of a photon as shown in 

equation 3.10, where ћ is the reduced Planck’s constant, ω is the angular frequency, c is 

the speed of light, and λ is the wavelength 

 

 c2

   (3.10)
  

In this work a Cary 5E UV-Vis-NIR dual-beam spectrophotometer was utilized to 

measure the optical transmittance of transparent electrodes. Measurements were taken in 

at least 3 different points per sample, where typically two or more measurements would 

trace almost exactly the same plot. A representative plot that best represented (usually 

one of the traced plots) the collected data is presented in this thesis. A sample UV-Vis-

NIR plot with data for an as-made M-SWNT film and a HNO3 Doped M-SWNT film are 

presented in Figure 3.13.  

 

Figure 3.13 Sample UV-Vis plot of As Made and HNO3 Doped Metallic SWNT films 

that were processed from the same MCE membrane with Rsh. The S11, S22, and M11 

energy bands are pointed out in the plot, along with 550nm wavelength mark that is used 

for determining the representative transmittance[86].  
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In the UV-Vis-NIR spectra shown above the S11, S22, and M11 absorption peaks 

are readily seen and labeled. The energy transition peaks S11, S22, and the M11 were 

briefly discussed in Chapter 2; in section 2.6. Recall Figure A.6 where the DOS for Sc-

SWNT and M-SWNT were presented. The reason that the Sc-SWNT absorption peaks, 

S11 and S22 and are present in the spectra of the M-SWNT electrode is due to the solution 

from which these films are processed not having 100% electronic type purity. Rather the 

M-SWNT solutions bought from Nanointegris have a purity of >95% and vice versa, as 

specified by the manufacturer.  

 To understand the absorption peaks observed in the UV-Vis-NIR spectra, a simple 

energy band structure diagram for a semiconductor is shown in Figure 3.14. Where the 

Fermi energy, Ef, is assumed to be at zero or exactly at the midpoint between the energy 

of the conduction band, Ec, and the energy of the valence band, Ev. The remaining 

variables are the separation energy, Es , the energy gap, Eg , the electron affinity,  , and 

the work function, Φ.  

 

Figure 3.14 Energy band structure diagram for a semiconductor. 

 Recalling the density of states for both Sc-SWNT and M-SWNT (Figure A.6), the 

energy of the absorption peaks is equivalent to determining the energy gap and “pseudo” 

energy gap between mirror van Hove singularities for Sc-SWNT and M-SWNT, 

respectively. Fortunately, the separation energy for each absorption peak for both 
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metallic and semiconducting nanotubes as a function of nanotube diameter in angstroms, 

Å, has been calculated and can be obtained from the so called Kataura plots [98]. 

 From the manufacturer (Nanointegris) specifications the average tube diameter 

for arc-discharge Sc-SWNTs and M-SWNTs is 1.4 nm. Then by referring to the Kataura 

plot[98] the theoretical energy separation of the S11, S22, and M11 absorption peaks are 

0.3eV, 0.6eV, and 0.9eV, respectively. Therefore, the energy gap (twice the energy 

separation) is 0.6eV, 1.2eV, and 1.8eV for the S11, S22, and M11 energy transitions, 

respectively. Comparing this with the observed absorption peak maximums in Figure 

3.13 occurring at approximately at 710 nm, 1030nm, and 1900nm for the M11, S22, S11 

energy transitions, respectively. Using equation 3.10 to determine the photon energies of 

light occurring at the specified wavelengths, the resulting energy transitions are 1.75eV, 

1.20eV, and 0.65eV for the M11, S11, and S22 absorption peaks, respectively. Therefore, 

the observed absorption peak maximum positions are in good agreement with the 

theoretical peak positions.  

 Another interesting observation of the UV-Vis-NIR spectra shown in Figure 3.13 

is that for the HNO3 doped M-SWNT sample the S11 absorption peak appears to be 

“bleached” away. This phenomenon can be understood by again referring to the density 

of states of Sc-SWNT and M-SWNT (see Figure 2.18a and b) the Fermi level is assumed 

to be slightly below zero as is the actual case in nanotubes due to chemisorbed functional 

groups and unintentional doping as described by Jackson[20]. Unintentional doping 

occurs when oxygen from air interacts with CNT to p-dope them. Recalling that HNO3 p-

dopes CNTs through intercalation or simply put it withdraws electrons in the valence 

band, causing the Fermi level to shift downwards as shown in Figure 2.18c and d. The 

Fermi level shift due to HNO3 effectively removes the S11 energy transition between the 

first mirror van Hove singularities in Sc-SWNTs. However, the Fermi level shift due to 

HNO3 for M-SWNT only partially “bleaches” the M11 absorption peak.  
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 Similarly, it can be shown that the removal of oxygen dopants and surface 

functional groups through thermal annealing effectively shifts the Fermi level back to 

zero and thereby maximizes the absorption peak (see Figure 2.19). This is easily noted in 

the UV-VIS NIR spectra as shown in Figure 3.15. 

 

Figure 3.15 UV Vis NIR spectra of As-made M-SWNT and Ar Anneal M-SWNT. The 

S11 peak has noticeably intensified due to the removal of surface functional groups 

shifting the Fermi level back to zero. 

 
Finally, it should be noted that since graphene is a so called zero band gap 

semiconductor, as can be noted by the DOS of graphene presented in Figure A.2, there 

are no absorption peaks present in the UV-Vis-NIR spectra for as-made or HNO3 Doped 

graphene films as shown in Figure 3.16. 
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Figure 3.16 UV-Vis-NIR spectra of as-made GPS and HNO3 doped GPS electrodes. As 

is apparent in the plot there are no visible absorption peaks 

3.6 Raman Spectroscopy 

 To assess the structural quality of carbon based nanomaterial transparent 

electrodes, Raman spectroscopy was utilized. Raman spectroscopy is a powerful tool 

based on the inelastic scattering of light that is used to characterize aspects of the zone 

center optical phonons in a material. Such measurements can reveal the presence of 

defects, strain, temperature, composition, and some structural aspects of materials. 

Measurements were taken by irradiating the samples with a laser source and measuring 

the shift in the energy of scattered photons from the sample surface. The change in 

energy of the scattered photons was measured using a combination of a Rayleigh filter, 

spectrometer, and a detector. The principle of operation of Raman Spectroscopy is briefly 

explained below.  

 The radiation from the laser in the form of photons has energy, εi, when incident 

on the surface of a material, were it is transmitted, reflected, or absorbed. Specifically the 

photons that are absorbed by an electron or phonon (significantly less likely) are only 

considered in Raman spectroscopy. The absorbing particle at ground state with energy εg 
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is then promoted to an excited virtual energy state, εv. Upon relaxation of the absorbing 

particle back to ground state, a photon is re-emitted with a phonon energy of εi or εf , 

where (εf ≠ εi). In the former case a photon is re-emitted with energy εi = εv - εg , or in 

other words the re-emitted photon’s energy is equal to the energy of the initial phonon 

from the laser in a process known as elastic or Rayleigh scattering. In the more 

interesting latter case, the change in energy of the re-emitted photon is due to the excited 

particle absorbing or emitting an additional energy carrier. This event causes the excited 

particle to move to a secondary virtual energy state ε2v, where the re-emitted phonon has 

energy εf  = ε2v – εg. This phenomenon is known as inelastic scattering or the Raman 

effect [99]. Inelastic scattering of a phonon has a probability of 1:10,000,000 and as such 

the elastically scattered photons are filtered out in measurements. 

 The change in energy of the photon in inelastic scattering can be equivalently 

described as the change in angular frequency of the photon. This equivalency becomes 

clear by recalling that the photon energy is ε = ћω, where ћ is Planck’s constant and 

therefore the photon energy is directly proportional to the photon frequency. In Raman 

scattering the incident photon frequency ωi is shifted by the optical phonon frequency ωp 

known as the Raman shift. The intensity of the Raman signal at a given Raman shift is 

proportional to the number of phonons present at frequency ωp to participate in the 

scattering process, which is material dependent[100]. Measured resonant peaks are well 

established for each specific material; this makes Raman spectroscopy a valuable tool to 

determine the presence of a material and associated defects present with it. 

 A Renishaw Invia Raman Microscope with a 488 nm Arା laser was used in this 

work as pictured in Figure 3.17. Measurements were taken with 10mW laser power and 

measured at in at least 3 different spots per sample. 
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Figure 3.17 Renishaw Invia Raman Microscope with a 488 nm Arା laser. Taken from 

reference [99]. 

 A sample Raman plot obtained from measuring graphene grown on nickel via 

CVD is shown in Figure 3.18. In graphene and CNTs there are three significant scattering 

modes that are present in the Raman spectrum including the D-band, G-band, 2D/G'-band. 

These scattering modes generally appear at approximate wavenumbers, but can and do 

vary slightly from sample to sample. The peak position also depends on the laser 

wavelength. 

 

Figure 3.18 (a) Raman spectroscopy measurement of graphene grown on nickel via CVD.  

The D-band occurs at ~1350 cm-1 and is generated from the scattering modes of 

structural defects in graphene. Therefore, the higher the intensity of the D-band the more 
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defects that are present. The G-band occurs at ~1585 cm-1 and is commonly referred to as 

the graphitic peak because this scattering mode is present in most carbon-based materials. 

Therefore, the ratio of the intensity of the G-band and D-band (IG/ID) is used to quantify 

the structural quality of graphene and CNTs. The last significant scattering band is the 

2D-band, it is also commonly referred to as G’-band. The 2D-band is the second overtone 

of the defect band that occurs at ~2720 cm-1 through a double resonance scattering 

process[41]. The 2D-band is useful to distinguish between the presences of graphene 

from that of graphite. In graphite there is a shoulder that is present at ~2698 cm-1 and for 

graphene the shoulder is not present[101], this concept is presented in Figure 3.19. The 

intensity ratio of I2D/IG band is used to quantify the numbers of layers in graphite. In 

CVD graphene an I2D/IG of 2 or higher usually corresponds to single layer graphene. 

 

Figure 3.19 Raman measurements comparing the 2D peak’s of a graphene and graphite 

sample. 

3.7 Conductive­Tip Atomic Force Microscopy Methodology 

To measure local electrical conductivity of nanotube networks a conductive-tip 

atomic force microscopy (C-AFM) tool was utilized. The principal of operation of C-

AFM is to apply a voltage through a conductive tip that is being raster scanned for a 
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small area, on the order of microns. As the conductive tip comes into contact with the 

sample, a current in response to the applied voltage is measured. After the scan has 

completed, an electrical current map for the local area that was scanned is produced. This 

electrical conductivity map is useful to determine the electrically active uniformity and 

the extent of electrical activity in the material.  

As-made M-SWNT and Sc-SWNT electrodes were initially shipped to the Dr. 

Neal Armstrong research group at the University of Arizona and conductive-tip atomic 

force microscopy (C-AFM) measurements were performed by Gordon MacDonald. On a 

later date a trip was made to the University of Arizona to investigate the “electrical 

conductivity maps” of SWNT electrodes for dedoped SWNT electrodes, equivalent to as-

made electrodes with surfactants removed to a high degree, and HNO3 doped SWNT 

electrodes. 

Prior to traveling the University of Arizona the SWNT electrodes were deposited 

onto glass and were cut in half with a Universal Laser System M-360 laser cutter. Where 

one half was treated with nitric acid and then dedoped by annealing on top of a covered 

hot plate at 200°C overnight and the other half was left as prepared. The prepared SWNT 

electrodes were exposed to air for at least six days prior to be measured with the C-AFM 

instrument at the University of Arizona by Gordon MacDonald. The electrodes were 

exposed to air for at least 6 days prior to be measured so that the electronic properties of 

the electrodes could have enough time to stabilize as was shown by Jackson[20]. Where, 

Jackson demonstrated that it takes ~150 hours for SWNTs to stabilize from unintentional 

doping from exposure to air via oxygen adsorption.  

To minimize experimental error 200nm of silver metallic fingers were deposited, 

via electron-beam (e-beam) vapor deposition, on SWNT electrodes prior to being 

measured with the C-AFM instrument. Measurements were taken ~500nm away from the 

Ag electrode tip to avoid contact with residually diffused Ag nanoparticles. This was 

done to reduce error due to shorts in the electronic pathways of the nanotube networks 
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caused by insufficient conductive intercalation pathways from the lack of metallic 

SWNTs. 

First, silver metallic fingers were deposited on the dedoped SWNT electrodes, 

while the as-made SWNT (other half) electrode was doped with HNO3. C-AFM 

measurements were then initially performed on the dedoped SWNT electrodes. 

Afterwards, 200nm of silver was deposited on the doped SWNT electrode and then the 

doped SWNT electrode was measured with the C-AFM instrument in the afternoon (~4-5 

hours after being doped). 

3.8 Surfactant Removal and Detection Techniques 

This section presents techniques employed to remove the surfactants sodium 

dodecyl sulfate (SDS) and sodium cholate (SC); along with the detection of surfactants 

via x-ray photoelectron spectroscopy (XPS). Primarily nitric acid treatments and thermal 

treatments in inert argon environments were utilized for surfactant removal. 

3.8.1 Nitric Acid Doping of Carbon Based Nanomaterials 

15.8M nitric acid was purchased from Fisher Scientific for the purpose of doping 

CBN electrodes. First, the CBN electrode was annealed at 90°C for 10 minute to remove 

residual adsorbed oxygen for a more efficient doping treatment. Next, the CBN electrode 

was given ~10 minutes to cool to room temperature. Failure to allow the CBN electrode 

to cool would result in the CBN electrode lifting off, when treated with HNO3. The next 

step was to measure 50ml of HNO3 in a clean beaker. Then the 50ml of HNO3 was 

carefully poured into a Petri dish. The CBN electrode was then carefully inserted at a ~45° 

angle into the HNO3 bath with acid proof Waf-O-Grip tweezers. The CBN electrode was 

left in the HNO3 bath for 45 minutes to dope. Afterwards, the CBN electrode was 

carefully removed with the acid proof tweezers and was slowly dried with a nitrogen gun. 

It is emphasized that the CBN electrode had to be handled very carefully, because any 
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abrupt movements would easily cause the electrode to crack or to partially lift off. Finally, 

the CBN electrode was placed on top of a hot plate at 80°C for 2 minutes to evaporate 

any residual HNO3 molecules and to prevent the electrode from becoming “foggy”; 

which would skew UV-Vis-NIR measurements. 

3.8.2 Annealing Experimental Procedures 

Annealing studies were performed using a Thermo Fisher Scientific Thermolyne 

59300 High Temperature Tube Furnace connected to a Franklin Electric vacuum pump 

with 1.5hp, voltage rating of 115/208V and model # 1201006405. The pressure was 

monitored with a Duniway Stockroom Corp. Digital Thermocouple readout, Model 

#DTC-531-115-BX. The digital thermocouple readout was capable of measuring 

pressures within the 2mTorr to 2Torr range. Furthermore, a foreline trap manufactured by 

Key High Vacuum Products Inc. with model # LNT-6-150-K was used to cool down, 

with liquid nitrogen, heated Ar before it was exhausted into the vacuum pump. This was 

done specifically to help extend the lifetime of the vacuum pump and had no impact on 

the annealing experiments. 

A picture of the vacuum annealing setup is shown below in Figure 3.20, where the 

top portion of the annealing setup consisting of the furnace, the pressure meter and the 

foreline trap are shown in Figure 3.20a and the connected vacuum pump is shown Figure 

3.20b. In all of the annealing experiments presented in chapter 4 and 5, 500 standard 

cubic centimeters per minute (SCCM) of Ar were flowed through the quartz tube. 

Furthermore, the quartz tube was inserted two inches away from the vacuum seal as 

shown in Figure 3.20 and all samples were placed 15 inches from the right tip of the 

quartz tube. This was done to ensure consistent thermal conditions for all annealed 

samples. The time was measured one hour from when the furnace temperature readout 

displayed the desired temperature with a timer. After the annealing time had expired, the 
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quartz tube was pulled out to expose the annealed CBN electrode to room temperature, 

where the sample was cooled to room temperature over a period of ~20 minutes.  

 

 

Figure 3.20 (a) Thermo Fisher Scientific Thermolyne 59300 High Temperature Tube 

Furnace. (b) Franklin Electric Vacuum pump, 1.5hp, 115/208V, model # 1201006405. 

3.8.3 Detection of Sodium via X‐Ray Photoelectron Spectroscopy 

To ensure the complete removal of surfactants SDS and SC, X-ray photoelectron 

spectroscopy (XPS) studies were performed. XPS is a quantitative spectroscopy 

technique used to measure the elemental composition of samples. In a primitive sense, 

the principle of operation of XPS is to bombard a sample with X-rays at varying energies, 

where the kinetic energies of the electrons escaping from the top 1 to 10nm of the 

material are measured with a detector. As most elements and compounds have well 

documented binding energies, the element or compound to which the detected emitted 

electron belonged to can be readily determined. As the surfactants SDS and SC are 

organic compounds, the only distinguishable element that can indicate the removal of the 

surfactant is sodium (please refer to Figure 2.6). As such the XPS plots presented in this 

(a) 

(b) 
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work will only correspond to the Na 1s core peak, because this study is only interested in 

the removal of surfactants. Furthermore, to minimize experimental error, XPS scans were 

done on at least 3 spots on each sample, were all of the measured spots had to yield 

consistent results in order to be accepted and presented in this work. All XPS 

measurements were performed by Dr. Anuradha Bulusu[102], with a Thermo K-Alpha 

XPS system with a detection limit of ~0.1 atomic percentage, on samples prepared by the 

author. XPS spectra indicating the presence or absence of surfactant through examination 

of the Na 1s core peak are shown in Figure 3.21a and b, respectively. 

 

 

Figure 3.21 (a) XPS spectra of well defined Na 1s peak indicating the presence of the surfactant SDS for 

an as-made mixed SWNT film. (b) XPS spectra of a non-existent Na 1s peak for an HNO3 dedoped mixed 

SWNT film indicating the absence or removal of the surfactant SDS[102].  

 
 It should be noted that the Na 1s core peak for sodium cholate is not easily 

detected via XPS and as such an indirect approach through comparison of sheet 

resistances is employed to track SC’s removal. The removal of the surfactant sodium 

cholate will be explained in more detail in chapter 4. 

3.8.4 Experimental Overview 

The impact of surfactants was first investigated with a C-AFM instrument (all 

measurements were taken by Gordon MacDonald at the University of Arizona) to 

determine the extent to which insulating surfactants SDS and SC degraded the electrical 

(a) (b) 
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performance of SWNT electrodes at the nanoscale. For the C-AFM measurements the 

electrical conductivity maps were compared for as-made, dedoped, and HNO3 doped 

metallic (and semiconducting) SWNT electrodes. 

Afterwards the removal of the surfactants was investigated via XPS 

measurements to detect the removal of the Na 1s core peak from sodium containing 

surfactants SDS and SC (recall Figure 2.6). As-made, HNO3 doped, and Ar annealed 

carbon based nanomaterial electrodes were utilized to track the presence and the removal 

of the Na 1s core peak. It is pointed out that mixed SWNTs were dispersed with only the 

surfactant SDS; M-SWNTs and Sc-SWNT were dispersed by Nanointegris with 

surfactant ratios of SDS to SC of 3:2 and 1:4[62], respectively; and graphene 

puresheets(GPS) were dispersed solely with the surfactant SC. For a summary of this see 

Figure 3.1. The identification of what surfactants each of the CBN solutions were 

dispersed with is crucial for the discussion of the removal of surfactants in Chapter 4.  

3.9 Conclusions 

This chapter discussed the relevant fabrication and characterization techniques 

need for the discussions in Chapter 4 and 5. The important topics covered in this chapter 

are summarized below. 

Section 3.1 discussed the dispersion of Mixed SWNTs in aqueous solutions 

through the use of the surfactant SDS and bath sonication. With the exception of 

graphene oxide, all other CBN solutions used in this work were bought in solution form 

from Nanointegris who supplied M-SWNTs, Sc-SWNTs, and graphene puresheets. The 

dispersion of graphene oxide is left for Chapter 5. Section 3.3 discussed the Vacuum 

filtration technique and the process to transfer films to substrates, which were utilized to 

fabricate CBN electrodes in this work.  

 Section 3.4 explained sheet resistance and contact resistance and discussed the 

transfer length method (TLM). The reliability of the transfer length method was 
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discussed. Section 3.5 discussed the principle of operation of UV-Vis-NIR spectroscopy 

and the presence of the S11, S22, and M11 absorption peaks in the spectra. A validation that 

the absorption peaks present in the spectra were in fact S11 , S22, and M11 was done 

through the use of the Katuara plots[98] and the equation of the energy of a photon. 

Section 3.6 presented the principle of operation of Raman spectroscopy and discussed 

how graphene and SWNTs main resonant peaks, G-band, D-band, and 2D-band were 

helpful in evaluating the quality of the CBN electrodes produced. The intensity ratio IG/ID 

was presented to qualitatively evaluate the structural quality of CBN electrodes by 

comparing the intensity of the graphitic peaks against the defect peaks. 

 Section 3.7 discussed the experimental methodology used to characterize SWNT 

electrodes with a conductive-tip atomic force microscopy tool. Section 3.8 discussed 

surfactant removal and detection techniques. In particular, the experimental procedure 

used to dope CBN electrodes with nitric acid and thermal treatments in Ar environments 

to remove surfactants were presented. Finally, the use of x-ray photoelectron 

spectroscopy to detect surfactants was explained. 

 The upcoming chapters 4 and 5 represent the research contribution in this work. 

Chapter 4 begins by investigating the impact of surfactants on electrode performance. 

Chapter 4 follows up by determining the effectiveness of chemical and thermal 

treatments in removing insulating surfactants. Will use UV-Vis-NIR spectroscopy 

heavily to qualitatively describe what is happening to the SWNT electrodes after thermal 

annealing and chemical doping processes. Thereafter, chapter 4 continues with a 

discussion of the effects of annealing on the optoelectronic properties on mixed SWNTs, 

Sc-SWNTs, and M-SWNTs. Chapter 5 presents work done on graphene SWNT 

composites; and discusses how the IG/ID was found to be useful in describing what 

occurred when samples were annealed to 1000°C with a suspected slight oxygen leak that 

made the SWNTs and reduced GO SWNT electrodes more transparent. 
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CHAPTER 4 : IMPACT OF SURFACTANT REMOVAL ON 

ELECTRODE PERFORMANCE 

4.1 Introduction 

In this chapter the impact of surfactant removal on electrode performance is 

investigated. The surfactant sodium dodecyl sulfate (SDS) is known to be completely 

removed through nitric acid treatment[42]. However, methods to remove the surfactant 

sodium cholate (SC) adsorbed onto the surface of carbon based nanomaterials are not as 

clear in literature.  

Knowing that the surfactant SDS is removed through nitric acid treatment, the 

extent to which the insulating surfactant sodium dodecyl sulfate (SDS) degrades the 

electronic performance of SWNT electrodes was investigated. This was done through C-

AFM measurements, by comparing the electrical conductivity maps of as-made, nitric 

acid doped, and dedoped SWNT electrodes. 

Chapter 4 continues by determining the optimal method to remove the surfactant 

sodium cholate (SC), either through nitric acid treatment or thermal treatment in an Ar 

environment. It was determined that the presence of the Na 1s core peak via XPS from 

sodium cholate could not be detected. To remedy this, the removal of surfactant SC was 

inferred through comparisons of the sheet resistances of as-made, HNO3 doped, and Ar 

annealed graphene puresheets electrodes; as the removal of the surfactant would present 

noticeable improvements in sheet resistance. Furthermore, the graphene puresheets 

electrodes (to the knowledge of the author) were not reported to be functionalized and 

therefore dedoping effects through thermal annealing were considered to be negligible. 

Thus, allowing the removal of the surfactant SC to be inferred. 

It was determined that the surfactant SC is more effectively removed through 

thermal treatments at 1000°C in an Ar environment. Furthermore, it was determined that 
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the surfactant SDS was also completely removed through thermal treatments at 1000°C 

in an Ar environment. Thus, the remainder of this chapter is dedicated to studying the 

behavior of carbon based nanomaterials in response to thermal treatments from 

temperatures of 400°C to 1000°C.  

The concept of the competing effects between interparticle resistances and 

intraparticle resistances for thermally treated electrodes discussed in section 2.6; was 

utilized heavily to understand the impact of surfactant removal. The effects of annealing 

in an Ar environment as a function of temperature were investigated for M-SWNTs, 

mixed SWNTs, and Sc-SWNTs. For the annealing studies the removal of surface 

functional groups was heavily investigated through UV-Vis-NIR spectroscopy 

measurements by observing changes in the S11 and S22 absorption peaks. The S11 and S22 

absorption peaks were present in varying degrees in the UV-Vis-NIR spectra of M-

SWNTs, mixed SWNTs, and Sc-SWNTs due to concentrations of Sc-SWNTs of <5%, 

~67%, and >95%, respectively. Finally, the healing of defects in the annealed carbon 

based nanomaterial electrodes was not considered due to Raman spectroscopy 

measurements yielding no increases in the IG/ID; for samples annealed in Ar 

environments up to temperatures of 1000°C. 

4.2 Impact of Surfactants on CNT Networks by C­AFM Analysis 

Electrically insulating surfactants are necessary for dispersing SWNTs in DI 

water for the purpose of fabricating macroscopically uniform films through various 

deposition techniques including vacuum filtration, ultrasonic spray coating, spin coating, 

and ink jet printing. However, surfactants are not easily removed and remain adsorbed on 

the surface of SWNT electrodes, even after being thoroughly rinsed with DI water. The 

insulating surfactants that remains adsorbed on SWNT electrodes limit nanotube-

nanotube contact, degrade electrical conductivity, and contribute to increased surface 

roughness. An example of a 50µm x 50µm AFM scan of an as-made M-SWNT electrode 
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film is presented in Figure 4.1. Where numerous tall “islands” are present that may be 

partially due the presence of surfactants, organic buildup, and dust. This makes it difficult 

to perform C-AFM measure of as-made samples.  

   

Figure 4.1 50µm x 50µm AFM scan of an as-made metallic SWNT electrode. Image 

taken in collaboration with the Dr. Neal Armstrong research group at the University of 

Arizona. 

 
Besides contributing to the surface roughness of randomly oriented nanotube 

networks and increasing sheet resistance; surfactants negatively impact the electrical 

performance at the nanoscale. To illustrate this point, conductive tip atomic force 

microscopy (C-AFM) scans were performed on the as-made M-SWNT and Sc-SWNT 

electrodes as shown in Figure 4.2b and d, respectively. Furthermore, the corresponding 

tapping mode scan for an as-made M-SWNT and Sc-SWNT electrode are presented in 

Figure 4.2a and c, respectively. 

As can be seen in Figure 4.2 the as-made M-SWNT and Sc-SWNT films have 

relatively few electrically active spots and a much larger proportion of electrically 

inactive or “dead” spots. The significance of these dead spots, which are largely due to 

the presence of insulating surfactants, is that they present potential barriers for charge 

carriers conducting through the nanotube network. This ultimately has a negative impact 

on the electrical properties of the nanotube network at both the nanoscale and macroscale. 

At the macroscale the sheet resistance suffers as a result of the insulating surfactants 

hindering electrical conduction by increasing interparticle resistances. At the nanoscale 

100.0 nm 

 0.0 nm 
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these electrically inactive dead spots are detrimental to the performance of organic 

electronics such as, OPVs and OLEDs. 

  

  

Figure 4.2 (a) 1µm x 1µm AFM scan of as-made metallic SWNT film in Tapping Mode. 

(b) C-AFM scan of As-made Metallic SWNT film. (c) 1µm x 1µm AFM scan of As-

made Semiconducting SWNT film in Tapping Mode. (d) C-AFM scan of As-made 

Semiconducting SWNT film. +10mV bias was used. Images taken in collaboration with 

the Dr. Neal Armstrong research group at the University of Arizona. 

 
For OPVs the electrically dead spots may decrease the power conversion 

efficiency of OPVs, by hindering charge carrier transport via “redirection” of charge 

carriers at the nanoscale. This concept can be better understood by recalling the principle 

of operation of an OPV (Figure 1.5). If a hole, from a successfully dissociated exciton at 

the acceptor/donor heterojunction, diffusing to the positive electrode encounters a dead 

spot it would be redirected to an active area. This redirection of holes increases its 

recombination probability in the donor layer, which would reduce the overall power 

conversion efficiency.  

Similarly it can be argued that for OLEDs, when a voltage is applied across the 

device, the electrically inactive dead spots will hinder the injection of holes through the 

50.0nm 

 0.0nm  0.0nA 

 1.0nA 

(a) 

(c) 

(b) 

(d) 



77 
 

SWNT positive transparent electrode into the transport layer. The decrease in efficiency 

of injecting holes into the transport layer would likely decrease the recombination 

probability (i.e. light generated through electroluminescence or the generation of excitons 

that emit light in the form of photons) at the transport and emissive heterojunction. This 

would require more power input to achieve comparable light output for the same SWNT 

electrode with surfactants completely removed. In other words, it would reduce the 

lumens per watt efficacy. 

Therefore, surfactants contribute to the surface roughness of TCE films and 

negatively impact the electrical conductivity at the macroscopic scale and nanoscale, due 

to their insulating nature and forcing charge carriers to be “redirected”, respectively. 

Fortunately, surfactants can be removed through chemical treatment and/or thermal 

treatment, as will be discussed in the remainder of this chapter. 

4.2.1 Post Acid Treatment C‐AFM Analysis 

Recalling Figure 4.2 where it was shown that surfactants contributed to 

electrically inactive “dead spots” due to their insulating nature. Nitric acid treatment has 

been shown to remove the surfactant SDS and to densify films to create more nanotube 

contacts[42]. As a result of 15.8M Nitric acid treatment for 45 minutes the nanoscopic 

electrical properties of as-made M-SWNT and Sc-SWNT films were dramatically 

improved as is shown in Figure 4.3 and Figure 4.4, respectively. In Figure 4.3b and d the 

increase in electrical activity for the doped and dedoped M-SWNT electrodes is 

immediately apparent, with peaks in current rising from 1.0nA for the as-made case to 

100nA for the doped and dedoped samples. Closer inspection of Figure 4.3b and d 

demonstrates that the nanoscopic electrical conductivity of the doped and dedoped M-

SWNT electrodes are comparable. However, for unknown reasons at the time this thesis 

was written the dedoped electrode is noticeably more electrically active. Further research 

needs to be performed to determine the specific cause. 
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Figure 4.3 (a) 1µm x 1µm AFM scan of nitric acid doped metallic SWNT Film in 

tapping mode. (b) C-AFM scan of nitric acid doped metallic SWNT film on same spot as 

tapping mode. (c) 1µm x 1µm AFM scan of dedoped metallic SWNT Film in tapping 

mode. (d) C-AFM scan of dedoped metallic SWNT film on same spot as tapping mode. 

+10mV bias has been used. Images taken in collaboration with the Dr. Neal Armstrong 

research group at the University of Arizona. 

 
 The semiconducting SWNT electrodes also exhibited a dramatic increase in 

nanoscopic electrical conductivity after 15.8M nitric acid treatment for 45 minutes as 

shown in Figure 4.4. However, the Sc-SWNT electrode’s nanoscopic electrical 

conductivity is inferior to that of the M-SWNT electrodes. This suggests that the Sc-

SWNT electrodes need to be p-doped further through thionyl chloride (SOCl2) treatment, 

in order to have comparable or superior electrical conductivity than M-SWNT electrodes 

as suggested by Jackson et al. and Blackburn et al. [66, 67]. In this work, p-doping 

through SOCl2 treatment was not conducted due to limited access to laboratories that are 

adequately equipped to allow usage and storage of the chemical. As such C-AFM studies 

for M-SWNT and Sc-SWNT doped with HNO3 and SOCl2 is left for future work. 

(a) 

(c) 

(b) 

(d) 

50.0nm 
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Figure 4.4 (a) 1µm x 1µm AFM scan of nitric acid doped semiconducting SWNT film in 

tapping mode. (b) C-AFM scan of nitric acid doped semiconducting SWNT film on same 

spot as tapping mode. (c) 1µm x 1µm AFM scan of dedoped semiconducting SWNT 

Film in tapping mode. (d) C-AFM scan of dedoped semiconducting SWNT film on same 

spot as tapping mode. +10mV bias has been used. Images taken in collaboration with the 

Dr. Neal Armstrong research group at the University of Arizona. 

4.3 Assessment of Surfactant Removal 

 To ensure the complete removal of surfactants SDS and SC, X-ray photoelectron 

spectroscopy (XPS) studies were performed. For information on XPS please review 

section 3.8.3. 

4.3.1 Removal of Surfactant Sodium Dodecyl Sulfate 

 The removal of the surfactant SDS was first investigated by comparing an as-

made mixed SWNT film (dispersed only with SDS), that had been thoroughly rinsed with 

DI water and a HNO3 dedoped mixed SWNT film (both films were fabricated via the 

vacuum filtration method). Mixed SWNTs were chosen for this study because they are 

the only carbon based nanomaterial that the surfactant used for solution processing can be 

(a) (b) 

(c) (d) 

50.0nm 

 0.0nm  0.0nA 

 100.0 nA 
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chosen by the author. The other solutions were already dispersed in surfactants 

predetermined by vendor Nanointegris.  

 It is well known that rinsing SDS dispersed SWNT films with DI water can help 

remove the surfactant. However, it is not definitively certain whether the SDS is 

completely removed. Thus, to test this hypothesis the as-made film that has been 

thoroughly rinsed with DI water will be characterized for the presence of the surfactant 

via XPS. Furthermore, as it has already been shown that the use of HNO3 is effective in 

removing SDS [42], this experiment will be useful in showing the validity of this 

approach. The results of this experiment are shown in Figure 4.5a and b. Where the XPS 

spectra obtained from the as-made and HNO3 dedoped mixed SWNT films strongly 

suggest the presence of SDS and the removal of SDS, respectively. 

 

 

Figure 4.5 (a) XPS spectra of Na 1s peak for as-made mixed SWNT film that has been 

thoroughly rinsed with water. (b) XPS spectra of Na 1s peak for HNO3 dedoped mixed 

SWNT film. The removal of the Na 1s core peak is a clear indication of the removal of 

the surfactant SDS[102].  

 
The removal of SDS has been demonstrated and is in agreement with 

literature[42]. It is of interest to determine if thermal annealing in an inert environment 

such as Ar is also effective in removing this surfactant. For the next experiment an as-

made M-SWNT thoroughly rinsed with DI water and an M-SWNT film annealed in an 

(a) (b) 
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Ar environment at 1000°C for 1 hour are characterized with XPS. The difference in this 

scenario is that M-SWNTs are dispersed using both SDS and SC by vendor Nanointegris. 

Inspection of the XPS spectra of the as-made and Ar annealed sample in Figure 4.6, 

suggests that both surfactants have been removed. Although, this assumption turns out to 

be very likely true, as will be demonstrated later in this chapter, the ability of the XPS 

tool to detect Na in sodium cholate has not yet been demonstrated. Without 

demonstrating that the XPS tool can detect Na from SC it cannot yet be concluded that 

the surfactant SC was in fact removed. Thus, it can only be concluded at this point that 

SDS has been removed through annealing in an Ar environment at 1000°C.  

 

 

Figure 4.6 (a) XPS spectra of Na 1s peak for as-made M-SWNT film. (b) XPS spectra of 

Na 1s peak for M-SWNT film annealed at 1000°C in an Ar environment [102].  

4.3.2 Removal of Sodium Dodecyl Sulfate as a Function of Temperature 

 In order to better understand the affects of annealing on SWNT electrodes, the 

removal of surfactant SDS as a function of temperature was investigated through XPS. 

For the as-made M-SWNT sample a very low average atomic percentage of Na is 

detected at 0.37%[102]. This low atomic percentage is within the detection limits of the 

Thermo K-Alpha XPS, so it is safe to assume that surfactants are still present on the 

thoroughly rinsed electrodes. Furthermore, type-sorted SWNTs are reported to be 

dispersed in a 3:2 and 1:4 ratio of SDS to SC for M-SWNT and Sc-SWNT solutions, 

(a) (b) 
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respectively[62]. The detection of Na in XPS scans is suspected to be solely due to the 

presence of SDS, as discussed earlier it has been observed in literature that the Na 1s core 

peak for SC is not detectable through XPS[103]. 

 For the 400°C Ar annealed sample out of three XPS scans only one scan detected 

Na at an atomic percentage of 0.14[102]. For the 600°C and 1000°C Ar annealed samples, 

the Na 1s core peak was not detected in any of the XPS scans[102]. This suggests that at 

400°C the surfactant SDS is removed to a high degree but not entirely as the Na 1s core 

peak was detected in at least one XPS measurement. At 600°C and a 1000°C it can be 

said the surfactant SDS has been removed to an extremely high degree, if not completely 

removed. From this XPS study it is clearly seen that as the annealing temperature is 

increased the amount of the surfactant, SDS, which is removed increases as well. It is 

suspected that SDS is fully removed at annealing temperature of 600°C.  

4.3.3 Removal of Surfactant Sodium Cholate 

 To determine if the Na 1s core peak in the surfactant sodium cholate can be 

detected with the XPS tool, an as-made graphene puresheets(GPS) film, dispersed only 

with SC, was scanned at multiple spots. Surprisingly, the result shown in Figure 4.7 is 

that Na 1s core peak was not detected in the XPS spectra. However, it is highly likely that 

the surfactant is still present on the GPS film as no treatment other than thoroughly 

rinsing with DI water has been performed to remove the surfactant. This assumption is 

supported by the study of Frank et al.[103], where it was suspected that SC was present 

on their throroughly rinsed electrodes, even though the presence of Na was not detected 

in their XPS scans. Currently the reason as to why the Na 1 s core peaks are not 

detectable through XPS is unclear.  
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Figure 4.7 XPS spectra of Na 1s peak for graphene pure sheets film. The sodium peak 

was not detected by the XPS tool for reasons that are currently unknown [102]. 

 
 Although the Na 1 s core peaks for SC cannot be directly detected through XPS it 

is still possible to determine the removal of the surfactant sodium cholate indirectly 

through comparisons of the sheet resistances of as-made, Ar annealed, and HNO3 doped 

graphene puresheets (GPS) electrodes. Sheet resistance can give clear indications of the 

removal of SC because the surfactant is electrically insulating and therefore if the 

surfactant is removed there should be a noticeable decrease in the sheet resistance of the 

electrode. Furthermore, the GPS have not been functionalized and therefore should not be 

heavily doped. However, unintentional doping through exposure to air cannot be 

completely ruled out, but are considered to have minimal impact on the conductivity of 

the GPS electrodes when compared to the impact of the removal of surfactants. Moreover, 

annealing of the GPS electrodes should not shift the Fermi level significantly, because 

there are no carboxylic functional groups present to dedope the electrodes. As a result it 

can be inferred that the change in Rsh can be used to qualitatively evaluate the extent to 

which the SC has been removed for Ar annealed films. However, chemically treating 

graphene with HNO3 has been shown to p-dope graphene[5]. As a result more caution 

will need to be taken to evaluate if the surfactant SC has been removed.  

 To begin the investigation of the removal of the surfactant sodium cholate, an as-

made graphene puresheets (GPS), an HNO3 doped GPS, and an Ar anneal 1000°C GPS 
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transparent electrodes were prepared. The samples were processed from the same 

solution graphene puresheets research grade batch G10-010R, same vacuum filtration 

setup (new glass frit), and DI water with resistivity ~16.0MΩ-cm. The sheet resistance 

and transmittance of each sample was measured and the results are presented in Table 

4.1. The results of this experiment suggest that annealing in an Ar environment at 1000°C 

is the most effective method to remove the surfactant SC. Although it is not currently 

known if the decrease in Rsh for HNO3 treated GPS electrode is solely due to p-doping or 

due to removal of the surfactant SC. Further research needs to be conducted to determine 

this. It is suggested that it may be possible to maximize the conductivity of GPS electrode 

by annealing in Ar 1000°C followed up by doping in HNO3. 

 

Table 4.1 Comparison of optoelectronic properties of research grade graphene puresheets. 

Graphene Puresheets Research Grade 

Treatment Rsh Transmittance 

As-Made 13,299Ω/sq 78%T 

15.8M HNO3 

45 minute 
4,148Ω/sq 76%T 

Ar Anneal 1000°C

1 hour 
2,416Ω/sq 76%T 

 

 It should also be noted that there is a slight drop in transmittance for the annealed 

and nitric acid doped samples. Although, further research needs to be conducted, this 

might suggest that densification has occurred due to remnant surfactants between 

graphene sheets being removed; thereby creating greater overlap between “graphene 

islands”. This would then decrease the transmittance slightly, due to the increase in 

overlap between graphene sheets. Furthermore, the increase in overlap between graphene 

sheets would result in more intercalation pathways for current to conduct through. This 
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along with the removal of SC, may have both contributed to the significant drop in sheet 

resistance observed for the GPS electrodes. 

4.3.4 Removal of Sodium Cholate as a Function of Temperature 

 It has been determined that annealing in an Ar environment at 1000°C for 1 hour 

is effective at removing the surfactant sodium cholate (SC). The next natural question 

that arises is whether or not SC can be removed at lower temperatures. Therefore another 

experiment was conducted by comparing the optoelectronic properties of GPS electrodes 

annealed in Ar for 1 hour at 600°C and 1000°C. The results are compared in Table 4.2. It 

is interesting to note the Rsh obtained for the Ar Annealed at 1000°C is comparable to that 

obtained in the previous experiment as presented in Table 4.1. This validates the result 

obtained previously. However, it should be noted that the transmittance is ~1% less than 

obtained in the previous experiment. This is suggested to possibly be within the 

resolution of the instrument, caused by insufficient baseline runs, or dust particles 

collecting on the electrode that block light as UV-Vis-NIR measurements were not taken 

in a cleanroom. 

 

Table 4.2 Comparison of optoelectronic properties of research grade graphene puresheets 

Ar anneal. 

Treatment Rsh Transmittance 

Ar Anneal 600°C 

1 hour 
4,654Ω/sq 76%T 

Ar Anneal 1000°C

1 hour 
2,376Ω/sq 75%T 
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4.4 Motivation for Annealing Studies 

The removal of surfactants has been investigated and it is now of interest to 

investigate how SWNTs are affected by thermal annealing treatments. It has been shown 

that thermal treatments are more effective at removing surfactants than nitric acid 

treatment. However, annealing at temperatures up to 1000°C is likely to remove surface 

functional groups, including COOH groups that p-dope SWNTs. Therefore, even though 

the removal of surfactants will effectively improve the conductivity of the SWNTs, the 

removal of surface functional groups will effectively decrease its conductivity as was 

discussed in section 2.6. Thus, there is a competing effect between the removal of 

surfactants and surface functional groups. 

It is interesting to investigate if there is an optimal annealing temperature and to 

determine if the surfactants SDS and SC can be removed to a satisfactory degree at lower 

temperatures. Furthermore, investigations of healing defects, which is readily determined 

by the IG/ID ratio, at temperatures up to 1000°C in an inert environment , was concluded 

to not apply within this temperature range. The results of the Raman spectroscopy 

measurements concluded that there was no increase in the IG/ID; thus, suggesting that 

defects were not healed. This finding is consistent with literature that suggests that 

temperatures of 1600°C[104], 1700°C[105] and above are needed to heal defects. For this 

reason, healing of defects is not considered to any extent in the following discussion.  

This annealing study was not performed on the graphene puresheets as it was not 

specified to be functionalized and thus it was only of interest to investigate the removal 

of surfactant SC for the GPS electrodes. Also it is important to note that while the 

importance of this study can be questioned on the grounds that conductive plastic 

substrates needed for organic electronics cannot survive such high temperature; this 

concern can be remedied with a technique known as Rapid Thermal Annealing (RTA). 
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RTA can heat CBN electrodes at high temperatures for a sufficiently short time period 

such that the plastic substrate will be left unharmed. RTA studies are left for future work. 

4.5 Effects of Annealing of Metallic Carbon Nanotube Networks 

It was shown by Jackson[20] that annealing SWNTs in vacuum at 200°C 

overnight would dedope SWNTs. This fact was apparent in Jackson’s UV-Vis-NIR 

spectra that showed an increase in the intensity of the absorption peaks, most notably the 

S11 and S22 absorption peaks. This increase in intensity of the absorption peaks is due to 

the removal of surface functional groups that p-dope SWNTs. The removal of surface 

functional groups injects electrons back into the density of states, thereby effectively 

shifting the Fermi level up and intensifying the S11 and S22 absorption peaks. This 

concept was thoroughly explained in section 3.5. Similarly, annealing in an inert 

environment such as Ar should have a similar effect on the absorption peaks. However, it 

is not know if annealing at higher temperatures will cause an even greater increase in the 

intensity of the absorption peaks.  

To begin this study, two M-SWNT films were vacuum filtered and were labeled 

as film A and B. Film A was cut in half and the halves were labeled A1 and A2, were 

they were transferred onto quartz. Film A1 was left as made and film A2 was annealed in 

an Ar environment at 400°C for 1 hour. Film B was also cut in half, were the halves B1 

and B2 were annealed at 600°C and 1000°C in an Ar environment for 1 hour, 

respectively. Furthermore, the furnace’s pressure was monitored to ensure that air leaks 

were minimized during the annealing process. The results of the experiment are presented 

in Figure 4.8. Careful inspection of the UV-Vis-NIR spectra for films A2, B1, and B2 in 

Figure 4.8, clearly shows that there is not a noticeable increase in the intensity of the S11 

and S22 absorption peaks.  
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Figure 4.8 UV-Vis-NIR spectra for as-made, Ar anneal 400°C, Ar anneal 600°C, and Ar 

anneal 1000°C Metallic SWNT electrodes. Sheet resistance for each sample is presented 

as well. 

 
It is pointed out that the fabricated M-SWNT electrodes have Sc-SWNT 

absorption peaks present in its UV-Vis-NIR spectra because of Sc-SWNT concentration 

are <5% in solution, as specified by Nanointegris. Inspecting Figure 4.8 it is easily seen 

that the M11 absorption peak is not sensitive to the removal of surface functional groups, 

this can be understood by recalling the DOS for M-SWNTs. On the other hand the S11 

and S22 absorption peaks are much more sensitive to the detection of dedoping via the 

removal of surface functional groups. However, shifts in the absorption peaks observed in 

the UV-Vis-NIR spectra are not easily detected with M-SWNT electrodes. It is suggested 

that mixed SWNTs and Sc-SWNTs will be more sensitive to the affects of dedoping as 

they have higher concentrations of semiconducting nanotubes. Annealing studies for 

mixed SWNT and Sc-SWNT electrodes will be presented in the next sections. 

It is interesting to note that Jackson[20], reported an increase in Rsh for a M-

SWNT film with ~77% transmittance from 212Ω/sq for an as-made sample to 306Ω/sq 



89 
 

for the 200°C annealed sample. Whereas an M-SWNT electrode annealed in an Ar 

environment at 400°C for 1 hour effectively halves its sheet resistance. Further inspection 

shows that the 600°C Ar annealed sample experienced an even further decrease in Rsh and 

that the 1000°C Ar annealed sample surprisingly experienced an increase in Rsh. Also 

there was no noticeable change in the transmittance of the four samples. While the results 

obtained seem at odds with Jackson’s work they are in fact not. 

The increase in Rsh for Jackson’s vacuum annealed study is due to the removal of 

oxygen p-dopants adsorbed onto the surface of the nanotubes. This results in an 

intensification of the S11 absorption peak due to the injection of electrons back into the 

valence band, thus increasing the number of states available to participate in absorption at 

the S11 peak. Therefore, the number of charge carriers that need to overcome the S11 

bandgap increases, resulting in a net decrease in conductivity.  

In Jackson’s study it is presumed that the removal of surface functional groups is 

dominant over the removal of surfactants. Whereas, the reduction in Rsh for the 400°C Ar 

annealed sample is likely attributed to the removal of surfactants to some degree, 

dominating over the affect of partially removing surface functional groups and oxygen 

dopants. This data suggests that at 400°C the surfactants are partially removed and at 

600°C the surfactants are removed to a high degree, which is consistent with the study 

performed in section 4.3.2 and 4.3.4. Furthermore, it is suspected that residual surface 

functional groups that were not removed after annealing at 600°C were further removed 

through annealing at 1000°C in Ar for 1 hour. However, the sheet resistance increases for 

the 1000°C Ar annealed M-SWNT electrode, implying that the removal of surface 

functional groups may be dominating over the removal of surfactants. 

The results obtained for the 400°C and 600°C Ar annealed samples were logical. 

However, the results obtained for the 1000°C Ar annealed samples need to be reproduced 

to verify this observation. To this end the experiment was repeated for the 600°C and 

1000°C Ar annealed scenarios. The results obtained for the M-SWNT annealing study as 
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a function of temperature are presented in Figure 4.9. It is evident from Figure 4.9 that 

the results obtained for the 600°C and 1000°C Ar annealed samples are consistent and 

repeatable.  

 

Figure 4.9 Sheet resistance as a function of temperature for M-SWNT electrodes. 

4.6 Effects of Annealing of Mixed Carbon Nanotube Networks 

To investigate how mixed SWNTs dispersed only with SDS in DI water behave 

as a function of temperature, two mixed SWNT films labeled A and B were each cut in 

half and processed in the same manner as described in section 4.6. The results of the first 

trial are shown in Table 4.3.  

For the Ar anneal 400°C mixed SWNT electrode there is a drastic increase in the 

sheet resistance when compared to the as-made mixed SWNT electrode. Where in this 

case the intensification of the S11 absorption peak reduces the number of available charge 

carriers for electrical conduction to a heavy degree and dominates over the removal of 

surfactants, thereby increasing sheet resistance (Rsh). Next, for the Ar anneal 600°C 

mixed SWNT electrode the sheet resistance drops. Thus, implying that the removal of the 

surfactant SDS is dominant over the removal of surface functional groups for the Ar 

anneal 600°C mixed SWNT electrode. Finally, for the Ar anneal 1000°C mixed SWNT 
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electrode the sheet resistance slightly increases, which is likely due to the nanotubes 

being heavily dedoped.  

It is noted that the Rsh values obtained for the mixed SWNTs are relatively high 

and the reason why was investigated (see Appendix C). It was found that the nanotubes 

that were used to prepare the mixed SWNT solution had aggregated to a significant 

degree while in powder form. Furthermore, XPS analysis also revealed that Fluorine 

contaminants from Nanointegris’ solution had propagated to this solution through the 

glassware, despite all the glassware thoroughly being cleaned. XPS measurements found 

that the Fluorine peaks were still present on SWNT electrodes even after annealing at 

1000°C in Ar. This strongly suggests that the Fluorine contaminants had formed C-F 

bonds with the nanotubes most likely through nucleophillic substitution as the 

electronegativity of Fluorine is 4.0, which is higher than that of the hydroxyl groups at 

2.75. The attached Fluorine groups are believed to be the reason as to why the mixed 

SWNTs were not as heavily dedoped as expected, since the mixed SWNTs should be 

much more sensitive to dedoping than the M-SWNTs. 

 

Table 4.3 Sheet resistance for mixed SWNT electrodes as a function of temperature. 

Treatment Rsh (Ω/sq) 

As Made 3,930 

Ar Anneal 400°C 5,799 

Ar Anneal 600°C 3,982 

Ar Anneal 1000°C 4,099 

 

Due to the fear of the Fluorine contaminants and aggregation of the nanotubes 

skewing results obtained, the experiment was conducted again with a newer P3-SWNT 

Batch# 03-499 nanotube powder. The UV Vis NIR spectra with corresponding Rsh data 
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obtained as a function of temperature are presented in Figure 4.10. The mixed SWNTs 

behaved in the same manner as in the previous run and a higher increase in Rsh, believed 

to be caused by heavy dedoping, from annealing at 600°C to 1000°C is observed, as 

expected. 

 

Figure 4.10 UV-Vis-NIR spectra for as-made, Ar anneal 400°C, Ar anneal 600°C, and 

Ar anneal 1000°C mixed SWNT electrodes. Sheet resistance for each sample is presented 

as well. 

 Closer inspection of Figure 4.10 demonstrates that even though it is difficult to 

distinguish between the intensities in the S11 absorption peak between the annealed 

samples; the S22 peak for 1000°C Ar annealed sample is slightly more intense than the 

other annealed samples. The observation of a more intense S22 absorption peak for a 

1000°C Ar annealed mixed SWNT, suggests that the driving factor that is causing the 

nanotube electrodes’ Rsh to increase from annealing from 600°C to 1000°C is due to 

heavy dedoping of the nanotubes, as hypothesized. However, the difference in the 

intensity of the S22 absorption peak in the mixed SWNTs is not obvious and can be 

argued to be due to experimental error or beyond the resolution of the Cary UV-Vis-NIR 
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spectrophotometer. To clear any doubt, an annealing study for Sc-SWNT nanotubes was 

conducted as it is argued that Sc-SWNT will be much more sensitive to dedoping than 

the Mixed-SWNTs, because of its higher concentration of Sc-SWNTs. Therefore, 

validating evidence of heavy dedoping should be present in the UV-Vis-NIR spectra of 

the Sc-SWNT electrodes. 

4.7  Effects  of  Annealing  of  Semiconducting  Carbon  Nanotube 

Networks 

 In this section the annealing effects on Sc-SWNTs were investigated and the 

results obtained in this section were utilized to tie together the observations from section 

4.3 and 4.4. The goal of this section is to prove the hypothesis of heavy dedoping of 

functionalized SWNTs at 1000°C. To this end attention, is focused on the UV-Vis-NIR 

spectra of Sc-SWNT electrodes annealed in Ar at 600°C and 1000°C as is shown in 

Figure 4.11, where these two films came from the same membrane. In Figure 4.11, there 

is a clear shift in the S22 absorption peak and a less subtle shift in S11 absorption peak for 

the 1000°C Ar anneal electrode over the 1000°C Ar anneal electrode. 
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Figure 4.11 UV-Vis-NIR spectra of Ar anneal 600°C and Ar anneal 1000°C 

semiconducting SWNTs electrodes. There is a clear shift or intensification in the S22 

absorption peak and a subtle shift in the S11 absorption peak. 

 
 It could be argued that the films are not exactly the same as the UV-Vis-NIR 

spectra do not overlap in the visible range (400-700nm) as the M-SWNTs did in Figure 

4.8. However, this concern can be remedied by referring back to the Kataura plot [98]. 

Recalling that the arc-discharge SWNTs used in this work have a mean diameter of 

1.4nm, the energy separation for the S33 absorption peak can be estimated. There is 

however a spread in the data points for the S33 absorption peak in the Kataura plot, so the 

energy separation will be assumed to be at the center of the spread of data points. This 

corresponds to an energy separation of 1.15eV or an energy gap of 2.3eV. Using equation 

3.1 to solve for the theoretical wavelength at which the S33 absorption peak should 

present yields equation 4.1 or a wavelength of 539.1nm.  

 nm1.539
2

33

33

S
S 


 c

 (4.1) 

 Careful inspection of Figure 4.11 does show that there is an absorption peak 

present at ~530nm as suggested by theory. Therefore, if there is a shift in the S22 

Shift in S22 absorption peak 



95 
 

absorption peak due to heavy dedoping there should be also a shift in the S33 absorption 

peak, which there is. However, the shift in the S33 absorption peak is not desired as it 

decreases the transmittance at the 550nm wavelength benchmark. 

 The study of sheet resistance as a function of temperature for Sc-SWNTs, as was 

done for M-SWNTs and mixed SWNTs, is presented in Table 4.4. The results of the Sc-

SWNT annealing are very similar to those obtained for mixed SWNTs, which is expected 

as mixed SWNTs have ~2/3 Sc-SWNTs. However, the key difference here between the 

Sc-SWNTs and mixed SWNTs is that the Rsh of the Sc-SWNTs is much more sensitive to 

the removal of surface functional groups, as is expected due to the higher >95% 

concentration of Sc-SWNTs.  

 
Table 4.4 Sheet resistance for semiconducting SWNT electrodes as a function of 

temperature. 

Treatment Rsh (Ω/sq) 

As Made 1,933 

Ar Anneal 400°C 4,850 

Ar Anneal 600°C 3,608 

Ar Anneal 1000°C 4,746 

 

It was observed that removing surfactants through thermal annealing for Sc-

SWNT electrodes comes at a price, with a drastic increase in Rsh. However, it can be 

argued that if in fact the annealed Sc-SWNT electrodes were dedoped, then they should 

be capable of being ‘unintentionally” doped; through oxygen dopants adsorbing on the 

surface of the nanotubes via exposure to air. To investigate if it is possible to redope the 

nanotubes after annealing, the Ar anneal 600°C and 1000°C Sc-SWNT electrodes were 

measured after 10 days of exposure to air. An exposure to air for 10 days was chosen as it 

was shown by Jackson that it takes~150 hours or 6 days for nanotubes to stabilize from 
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unintentional doping. The results are presented in Table 4.5, were after a 10 day exposure 

to air, a drop in Rsh to 36.3% and 29.6% of its original value were observed for the Ar 

anneal 600°C and Ar anneal 1000°C Sc-SWNT electrodes, respectively. 

 

Table 4.5 Sheet resistance of Ar anneal 600°C and 1000°C semiconducting SWNT 

electrodes after annealing and post annealing 10 day exposure to air. 

Treatment 
After Annealing

Rsh (Ω/sq) 
10 Day Exposure to Air 

Rsh (Ω/sq) 
Ar Anneal 600°C 3608 1310 
Ar Anneal 1000°C 4746 1404 

 

 It is suggested that the Ar anneal 1000°C SWNT electrode recovered its 

conductivity at a faster rate than the Ar anneal 600°C electrode, because of the greater 

extent to which the surfactant SC was removed. However, it appears that the recovery in 

conductivity after annealing at 1000°C for 1 hour is limited, possibly due to potentially 

irreversible effects of the removal of surface functional groups through exposure to air 

alone. It is important to note that the Rsh for the Ar anneal 600°C and 1000°C Sc-SWNT 

electrodes exposed to air for 10 days are superior to the as-made Sc-SWNT electrode. 

This suggests that the negative annealing effects can be remedied through exposure to air 

and raises the question if it is possible to refunctionalize the carbon nanotubes with 

carboxylic acid groups. In this regards, due to time constraints a thorough study on the 

refunctionalization of the nanotubes was not performed in this work and is left as future 

work (see Chapter 6). 

 The last topic to be covered in this chapter is to answer if it is better to directly 

dope as-made Sc-SWNTs with HNO3 or if it is better to completely remove surfactants 

by annealing in Ar at 1000°C followed by doping in HNO3. The results of this study are 

presented in Figure 4.12 and conclude that Sc-SWNT electrodes are better off to be 

directly doped with HNO3 after preparation.  
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Figure 4.12 UV-Vis-NIR spectra of unannealed HNO3 doped Sc-SWNT and Ar annealed 

1000°C + HNO3 doped Sc-SWNT electrodes. Sheet resistance is also presented. The 

electrodes came from the same membrane cut in half.  

4.8 Conclusions 

 This chapter was concerned with the impact of surfactants on the electrode 

performance of carbon based nanomaterials. A summary of the topics covered in this 

chapter are presented, along with suggested future work. 

 Section 4.1 explained the layout of chapter 4 and how chapter 4 investigates the 

impact of surfactant removal on electrode performance. Section 4.2 investigated the 

impact of surfactants on nanotube networks via C-AFM analysis. The C-AFM scans of 

as-made Sc-SWNT and M-SWNT electrodes demonstrated, at the nanoscale, that the 

electrodes were plagued by electrically inactive or “dead” spots. These dead spots were 

argued to be detrimental to the performance of OLEDs and OPVs because they would 

force charge carriers on the surface of the positive electrode to be “redirected” to 

electrically active spots and thereby increasing the recombination probabilities of excited 

particles. As a result this was argued to have a potential negative impact on the power 

conversion efficiency and the lumens per watt efficacy for OPVs and OLEDs, 
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respectively. Nitric acid treatment on the SWNT electrodes was shown to dramatically 

increase the maximum electrical current within the nanotube network from 1.0nA to 

100.0nA. Section 4.3 demonstrated the removal of the surfactant SDS through HNO3 

treatment via XPS scans; and, the removal of surfactant SC through high temperature 

annealing by comparing the Rsh of as-made and annealed graphene puresheets electrodes 

that were only dispersed with sodium cholate (SC). It was determined that annealing in 

argon environments was the more effective method to remove surfactants and as such 

section 4.4 motivated the annealing studies that were conducted in sections 4.5-4.7. 

 Section 4.5 studied the optoelectronics properties of M-SWNTs as a function of 

temperature by annealing electrodes in an Ar environment for 1 hour. The study 

demonstrated improvements in Rsh with increasing annealing temperatures up to 600°C. 

These improvements were suggested to be caused by the removal of surfactants SDS and 

SC. This suggestion was consistent with the results obtained in section 4.3 through XPS 

measurements and comparisons of Rsh for annealed GPS electrodes. Finally, it was 

noticed that annealing at a 1000°C caused a sudden increase in Rsh. The cause for the 

increase in Rsh was hypothesized to be attributed to the removal of surface functional 

groups. However, the S11 and S22 absorption peaks (attributed to <5% Sc-SWNT 

concentrations) present in the M-SWNTs. Therefore, the UV-Vis-NIR spectra for M-

SWNTs were not sensitive enough to detect heavy dedoping. 

 In section 4.6, the effect of annealing on mixed SWNTs was investigated. The 

mixed SWNTs demonstrated a larger increase in Rsh due to heavy dedoping at 1000°C 

than the M-SWNTs did. Furthermore, the mixed SWNTs UV-Vis-NIR spectra showed a 

very slight increase in intensity in the S22 absorption peak for 1000°C Ar annealed 

electrode vs. the 600°C Ar annealed electrode. These observations for M-SWNT and 

mixed SWNTs both supported the hypothesis that the increase in Rsh of the 1000°C Ar 

annealed samples over that of the 600°C Ar annealed samples was due to heavy dedoping 

of the functionalized SWNT electrodes. 
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 In section 4.7, the effect of annealing on Sc-SWNTs was investigated. The 

hypothesis of heavy dedoping by annealing at 1000°C in Ar was heavily supported, 

through an observed shift or intensification of the S22 absorption peak in the 1000°C Ar 

annealed Sc-SWNT electrode over the 600°C Ar annealed Sc-SWNT electrode. This 

hypothesis was further supported through the observation that the annealed samples after 

a 10 day exposure to air experienced a drop in Rsh to 36.3% and 29.6% of their original 

value for the Ar anneal 600°C and Ar anneal 1000°C Sc-SWNT electrodes, respectively. 

This suggests that the negative annealing effects can be remedied through exposure to air 

through unintentional doping via oxygen dopants adsorbed onto the surface of the 

nanotubes. The possibility of refunctionalizing the carbon nanotubes with carboxylic acid 

groups was not investigated and is left as future work (see Chapter 6). Lastly, it was 

concluded that the Sc-SWNT electrodes benefit more by being doped with HNO3 after 

preparation rather than being annealed in Ar at 1000°C for 1 hr to fully remove 

surfactants followed by HNO3 doping.  

 From this study it is concluded that only the M-SWNT electrodes are positively 

impacted via surfactant removal through high temperature annealing in Ar for 1 hour. 

The optimal annealing temperature for M-SWNTs was found to be 600°C. It is suggested 

to obtain optimal performance for M-SWNT electrodes, that the electrodes should be 

annealed at 600°C and then doped with HNO3 and subsequently with SOCl2. This study 

is left for future work. Furthermore, it is suggested that Sc-SWNT electrodes do not 

benefit from annealing at high temperatures in Ar and should be doped with HNO3 and 

SOCl2 after fabrication.   
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CHAPTER 5 : GRAPHENE CARBON NANOTUBE COMPOSITE 

ELECTRODES 

5.1 Motivation for Graphene Carbon Nanotube Composites 

Graphene is a promising candidate as a transparent electrode due to its high 

mobility of charge carriers that theoretically allow a highly p-doped pristine sheet of 

graphene to have a conductivity ratio of 330 [2], which corresponds to a transmittance of 

~90% at 550nm with a Rsh of 10 Ω/sq. This high theoretical conductivity ratio makes 

graphene a suitable material for any practical transparent electrode application. However, 

in practice it is difficult to synthesize a pristine sheet of graphene and the effects of 

doping on graphene is not yet completely understood and is currently a topic of intense 

research. Currently as-synthesized graphene sheets are plagued by numerous defect sites 

that act as potential barriers that hinder charge transport and limit graphene conductivity 

ratios to ~11[2]; which is far short of the minimum industry standard.  

Current solution processing techniques that involve graphene oxide (GO), 

ultracentrifuged graphene, and exfoliated graphene are currently incapable of producing 

large area graphene sheets (1 cm2 or larger)[34, 35, 101]. This poses a problem for 

solution processed graphene, because the small area sheets need to make contact with one 

another for there to be conduction pathways for charge carriers to travel across the 

electrode. The graphene sheets that do not come into contact with other graphene sheets 

are often referred to as “islands”, because they are isolated at the nanoscale from the 

other sheets of graphene. The gaps between graphene islands act as potential barriers that 

hinder charge transport and thereby negatively impact Rsh. To minimize the occurrence of 

graphene islands the concentration of solution processed graphene can be increased. 

However, as was discussed in chapter 2 this requires compromising the transmittance and 

therefore does not solve the problem. A proposed solution to overcome these problems 
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with graphene is to prepare graphene SWNT composites. To augment the optoelectronic 

properties of carbon based nanomaterial transparent electrodes. 

To understand how a composite can resolve the aforementioned problems, the 

conductive nature of SWNTs and graphene is discussed. A perfectly pristine sheet of 

graphene that is free of defects can be thought of as having an infinite number of 

conduction pathways for charges to travel through within the boundaries of the sheet as it 

is considered to be a 2D material. SWNTs are considered to be 1D “conducting sticks” 

that has only one conduction pathway for charges to travel through across individual 

nanotubes. With this mind it can be easily pictured as SWNTs acting as “bridges” over 

graphene islands and defect sites and thereby minimizing the effects of the potential 

barriers formed by the graphene islands. This concept is illustrated in Figure 5.1 where it 

was envisioned by Tung et al. of a carbon nanotube(CNT) acting as bridge for charge 

carriers to travel across two isolated graphene sheets. Tung et al. demonstrated a reduced 

graphene oxide (RGO) CNT composite with Rsh of 240Ω/sq at 86%T after chemical 

doping with SOCl2[25]. This was a significant improvement over plain reduced graphene 

oxide electrodes that have reported optoelectronic properties of 104-105Ω/sq at 80%T[25]. 

 

Figure 5.1 Graphene/CNT composite scheme, illustrating how a charge carrier can 

conduct through a CNT bridge. Taken from reference [25]. 
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Graphene SWNT composites can also be equivantly thought of as using graphene 

sheets as “nano-patches” to “patch” nanotube networks (NTNs) to add conduction 

pathways in CNT electrodes, as shown in Figure 5.2[106]. This concept can be 

understood by recalling that NTNs are web-like with many voids between nanotube 

bundles, this gives SWNT electrodes their high transparency. Furthermore, when a sheet 

of graphene is placed on top of a NTN, conduction pathways for charge carriers to 

conduct across are added with a minimal impact on transmittance[106], typically a ~2% 

decrease. Moreover, recalling the UV-Vis-NIR spectra of the graphene puresheets 

electrodes in Figure 3.16, graphene does not have any absorption peaks, due to its lack of 

a bandgap, to have a significant impact on the transparency in the ultraviolet to near 

infrared regime.  

 

Figure 5.2 The concept of graphene “Nanopatches” on CNT networks is illustrated. 

Taken from reference [106]. 

 
Li et al. demonstrated a Rsh of 735Ω/sq at 90%T [106] by combining chemical 

vapor deposition (CVD) grown CNTs on nickel foils with graphene CVD grown on 

copper. The CNTs were placed directly on top of the graphene coated copper film and 

ethanol, poured on top of CNTS, was used to create strong adhesion between the 

graphene and CNTs. The optoelectronics properties of the individual graphene CVD 

synthesized by Li et al. were not presented in the article, but sheet resistances of CVD 

grown CNTs are on the order of 104Ω/sq at 80%T[42]. This also represents a significant 
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improvement in optoelectronic properties by employing graphene carbon nanotube 

composite electrodes.  

Xin et al. demonstrated a graphene SWNT composite with Rsh 181Ω/sq at 

82.2 %T[107]. This was achieved through exfoliating graphene sheets with microwave 

irradiation at 750W (via graphite intercalation compounds) for 10s, combined it in 

solution with SWNTs purchased from Aldrich and finally doped the composite electrode 

with HNO3 and SOCl2. The graphene SWNT composite developed by Xin et al. showed a 

significant improvement in optoelectronic properties over exfoliated graphite, treated 

with HNO3 to remove the NMP it was dispersed, with a Rsh of 3.56kΩ/sq with ~80%T at 

550nm by J. H. Lee et al.[108]. Therefore, it is reasonable to hypothesis that graphene 

and CNT electrodes overall experience enhanced optoelectronic properties through the 

implementation of composites. 

The potential of graphene SWNT composites as transparent conducting electrodes 

(TCEs), when compared to research on individual graphene and SWNT electrodes, is a 

fairly new research topic that is still in its infancy. The main benefit obtained when 

creating a composite is the small sacrifice in transparency for an exchange of a relatively 

large increase in conductivity, as demonstrated above [25, 106, 107]. This is supported by 

the fact that graphene does not have any absorption peaks in the UV to NIR regime and 

that it only decreases transmittance by ~2% transmittance per layer of graphene (see 

section 5.2).  

In the remainder of this chapter reduced graphene oxide SWNT and graphene 

CVD SWNT composites are discussed. High temperature treatments are employed to 

reduce graphene oxide as this was determined to be the most effective reduction method 

in literature[109]. Afterwards, graphene CVD SWNT composites are presented.  
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5.2 Graphene Oxide Experimental Procedures 

Graphene oxide was chosen as the first source of graphene to produce graphene 

SWNT composites due it being a readily available material that could be easily dispersed 

in aqueous solutions. The ability to disperse GO in aqueous solutions was compatible 

with the vacuum filtration technique that was being used throughout the course of this 

work. Furthermore, the ability of GO to be dispersed in aqueous solutions allows it to be 

manufactured at large scales with the ultrasonic spray coating technique. However, the 

outstanding problem with GO is that it is electrically insulating and needs to be reduced. 

In this section, high-temperature reduction of GO dispersed in water was investigated.  

5.2.1 Dispersion of Graphene Oxide in Deionized Water 

 Graphene oxide aqueous solutions were prepared using PR-1-64 GO powder 

provided by the Dr. Robert Haddon research group at the University of California 

Riverside. First, 1mg of PR-1-64 GO powder was measured and placed inside a 4 dram 

glass vial. Next, 10ml of filtered DI water was added to the glass vial. The aqueous 

solution was then bath sonicated for 20 minutes with a VWR 75 bath sonicator operated 

at power level 1.Afterwards, the top 8ml of the solution were remove with a pipette and 

place into a beaker (care was taken to ensure none of the undissolved GO was picked up). 

Then, 30ml of DI water were filtered and poured into another beaker and 1ml of 0.5%w/v 

SDS was added to the same beaker. Next, a MCE membrane filter was rinsed with 60ml 

of DI water and placed on top of the center of the glass frit in vacuum filtration setup, 

recall Figure 3.5. Thereafter, the 0.5%w/v SDS diluted in 30mL of DI water was vacuum 

filtered to prepare the membrane. Afterwards the 8ml of GO solution was vacuum filtered 

and the film was dried on top of a hot plate at ~70°C typically ~10 minutes.  

Transferring the GO films onto transparent substrates via dissolution of the MCE 

membrane in acetone (outlined in section 3.3.1) was attempted several times. All 

attempts had little success as all the films had poor adhesion to transparent substrates and 



105 
 

the electrode lifted off after the second immersion in the acetone bath. Furthermore, the 

GO electrodes were far too brittle as the films developed cracks when even the slightest 

pressure was applied to promote adhesion onto the transparent substrate. To resolve this 

problem, SWNT solutions were added to the graphene oxide aqueous solution prior to the 

20 minute bath sonication at power level 1. The composite films exhibited better 

adhesion to glass/quartz slides and were more robust than the GO electrode samples.  

The composite films were successfully transferred onto transparent substrates, 

where an example of a GO mixed SWNTs composite solution and electrode transferred 

on glass are presented in Figure 5.3a and b, respectively. Though difficult to see in Figure 

5.3 there were residual GO particles that did not completely dissolve in the DI water. It is 

important to note that the composite films were not easily transferred and often lifted off 

during acetone immersions. For this reason several films produced with the same 

processing conditions were prepared prior to attempting to transfer the composite 

electrodes onto transparent substrates. This was done to help minimize error associated 

with comparing films not coming from the same membrane.  

   

Figure 5.3 (a) GO dispersed in DI water solution. (b) Picture of SWNT puretubes GO 

composite film transferred onto glass. 

 
It should be noted that instead of the P3-SWNTs dispersed in SDS that were 

utilized in chapter4, SWNT puretubes dispersed with SDS in aqueous solutions were 

purchased from Nanointegris. In this chapter the SWNT puretubes will be simply referred 
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to as “mixed SWNTs”. An M-SWNT solution was also purchased from Nanointegris and 

is the same solution as was used in chapter 4. Sc-SWNTs were not used in this chapter 

due to the negative impacts on the optoelectronic properties of Sc-SWNTs electrodes 

experienced by annealing at high temperatures, as discussed in chapter 4. 

5.2.2 Thermal Reduction of Graphene Oxide in an Argon Environment 

In literature, it is common for researchers to attempt to reduce graphene oxide 

(GO) by flowing combinations of Ar and H2 gas during the annealing process. However, 

it was demonstrated in literature that annealing in ultra high vacuum at a 1100°C was the 

most effective reduction method over both annealing in Ar and H2, and hydrazine 

reduction[109]. Furthermore, in literature density functional theory calculations have 

shown that hydrogenation of graphene induces a band gap[110], a prime example of this 

is fully hydrogenated graphene, a wide bandgap semiconductor known as graphane[111]. 

Therefore, high temperature annealing experiments in an inert environment was the 

chosen path for reducing GO.  

Due to equipment and lab limitations it was not feasible to perform ultrahigh 

vacuum annealing experiments to reduce graphene oxide, as suggested by Mattevi et al. 

[109]. An alternative was to anneal in an inert environment of argon, as it was 

hypothesized that it would yield similar results to ultrahigh vacuum annealing. The 

details of the annealing procedure are outlined below. 

 Thermal reduction of graphene oxide experiments were carried out in a First Nano 

Easy Tube Furnace as presented in Figure 5.4. The samples were loaded into the furnace 

on top of a loading tray, afterwards the load tray was remote-control closed with the Easy 

Tube program that was interfaced with the furnace. Before annealing the tube furnace 

was purged and afterwards 500 standard cubic centimeters per minute (SCCM) of Ar 

were flowed into the tube furnace. The tube furnace was then heated from room 

temperature to 1000°C in a period of 15 minutes. Afterwards the temperature of the 
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furnace was held constant at 1000°C for 45 minutes and then the sample was allowed to 

cool slowly to room temperature over a period of ~3 hours. Finally, the sample was 

carefully removed from the furnace for further processing and characterization.  

 

Figure 5.4 First Nano Easy Furnace used to anneal graphene oxide CNT composite 

samples. 

It should also be noted that the pressure of the tube furnace was not monitored; 

this affords the possibility of unknown air leakages to have been present during the 

annealing runs and thereby adding an “unintentional variable” to the runs done. This led 

to peculiar results after each annealing run that was not consistent with observations 

reported in literature or results presented in chapter 4. The effects of this hypothesized 

unintentional variable are discussed thoroughly in this chapter. 

5.2.3 Experimental Overview 

The effects of annealing graphene oxide CNT composites in an Ar environment at 

1000°C on the optoelectronic properties and the healing of defects were investigated in 

section 5.2. Experiments were performed for as-made and Ar anneal 1000°C graphene 

oxide (GO) mixed SWNT composite electrodes; and, as-made and Ar anneal 1000°C M-

SWNT composite electrodes. The samples for the GO mixed SWNT and GO M-SWNT 

composite electrodes did not come from the same membrane due to the poor adhesion of 

the composite electrodes making it difficult to transfer onto transparent electrodes. 

However, the composite electrodes were fabricated under the same processing conditions.  
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To determine if defects were healed during the annealing process Raman 

spectroscopy measurements were taken before and after annealing. At each stage of the 

experiments the IG/ID values were calculated for three distinct measurement points and 

then the average was taken. The final value that is presented in this thesis is the average 

value of the three measurement points. 

To distinguish between the annealing effects on SWNTs and graphene oxide, 

SWNT electrodes were prepared in parallel by Dr. Anuradha Bulusu[86] and were 

processed under the same conditions and annealed in the same conditions as was done for 

the composite electrodes. Both sets of data will be presented in this chapter.  

In conclusion, the objective of the work done on graphene oxide SWNT 

composites was to determine the effects of annealing in an Ar environment at 1000°C on 

the optoelectronic properties and the healing of defects. Furthermore, the individual 

effects of annealing on graphene oxide and SWNT electrodes were distinguished through 

comparison with the data collected by Dr. Anuradha Bulusu on SWNT electrodes 

fabricated with the same processing conditions. 

5.3 Graphene Oxide Carbon Nanotube Composite Electrodes 

5.3.1 Graphene Oxide Mixed Carbon Nanotube Composite Electrodes 

The first experiment that was conducted was for a mixed SWNT graphene oxide 

(GO) composite. Due to the difficulty in transferring the mixed SWNT GO composites, it 

is reiterated that the films did not come from the same membrane; but, were prepared 

under the same processing conditions. The UV-Vis-NIR spectra for as-made and Ar 

anneal 1000°C GO mixed SWNT composite electrodes are presented in Figure 5.5. 

Interestingly there is a complete upward shift in the entire UV to NIR regime in the UV-

Vis-NIR spectra and the sheet resistance had also decreased. Furthermore, the S11 

absorption peak had intensified as expected from the discussion in section 3.5. However, 
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this simultaneous increase in the transmittance and decrease in sheet resistance, from the 

author’s knowledge, has not been presented in the literature. Furthermore, drastic 

increases in the transmittance of graphene oxide via reduction to graphene have not been 

reported in the literature. The increase in the transmittance from this Ar annealing process 

is ~14%, which is well above the resolution of the Cary 5E UV-Vis-NIR 

spectrophotometer. This peculiar behavior is investigated in further detail in the 

remainder of this section. 

 

Figure 5.5 UV-Vis-NIR spectra and sheet resistance of as-made and Ar anneal 1000°C 

graphene oxide mixed SWNT composite electrodes. 

 
 Raman scans performed on the GO mixed SWNT composites electrodes, 

demonstrated an increase in the IG/ID ratios from 17 for the as-made composite to 40 in 

the 1000°C Ar anneal sample. This suggests that defects have been healed. Therefore, the 

sheet resistance of the post annealed graphene oxide mixed SWNT composite is likely 

attributed to the reduction of graphene oxide and the healing of defects. At this point it is 

not certain if the healing of defects is due to the reduction of graphene oxide, if it is due 

to the nanotubes, or both.  
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 To distinguish between the individual contributions of graphene oxide and the 

mixed SWNTs, Dr. Anuradha Bulusu conducted a parallel experiment with mixed SWNT 

electrodes with the same processing conditions. The results of the transmittance and sheet 

resistance of the as-made and Ar anneal 1000°C mixed SWNT electrodes are presented in 

Figure 5.6. It is interesting to note that after the mixed SWNTs were annealed in an Ar 

environment at 1000°C the sheet resistance went up, which is consistent, with the 

observations made for the 1000°C Ar anneal mixed SWNT sample shown in chapter 4, 

(see Figure 4.10). As discussed in chapter the increase in sheet resistance is due in part to 

the removal of surface functional groups. However, the increase in transmittance by ~17% 

is peculiar and does not agree with the experiments done in chapter 4. 

 

Figure 5.6 UV-Vis-NIR spectra and sheet resistance of as-made and Ar anneal 1000° 

mixed SWNT electrodes[86]. 

Raman scans performed on the mixed SWNT electrodes, contrary to the results 

obtained for mixed SWNTs done in chapter 4, showed an increase in the IG/ID ratios from 

28 for the as-made mixed SWNT to 52 in the 1000°C Ar anneal mixed SWNT electrode. 

This suggests that defects have been healed and is consistent with the data collected for 

the as-made and Ar anneal 1000°C GO mixed SWNT composite electrodes.  
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For the mixed SWNT electrodes annealed at 1000°C in an Ar environment, it is 

suggested that the removal of surface functional groups is the dominating factor that is 

contributing to the increase in sheet resistance. Furthermore, the result of the mixed 

SWNT electrode also lightening strongly suggests that the increase in transmittance is not 

due to the reduction of graphene oxide as was hypothesized. Moreover, the mixed 

SWNTs experienced a comparable increase in transmittance as the GO mixed SWNT 

composite electrodes. This suggests that the nanotubes are more likely the source of the 

increase in transmittance rather than the graphene oxide.  

The next topic of interest is to determine if the observed increase in transmittance 

is restricted to mixed SWNTs or if a similar increase in transmittance can be obtained for 

M-SWNT electrode. 

5.3.2 Graphene Oxide Metallic Carbon Nanotube Composite Electrodes 

The optoelectronic properties of the as-made and Ar anneal 1000°C graphene 

oxide M-SWNT composite electrode were measured and presented in Figure 5.7. Again, 

it is interesting to note that the UV-Vis-NIR spectra of Ar anneal 1000°C experienced an 

upward shift in transmittance. Furthermore, the M-SWNT Ar anneal 1000°C electrode’s 

sheet resistance also decreased. The M-SWNT electrode’s sheet resistance is expected to 

decrease because of the removal of surfactants as was shown in chapter 4. 
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Figure 5.7 UV-Vis-NIR spectra and sheet resistance of as-made and Ar anneal 

1000°graphene oxide M-SWNT composite electrodes. 

 
Raman measurements taken on the GO M-SWNT composite electrodes, 

consistent with the results obtained for the GO mixed SWNTs composited electrodes, 

demonstrated an increase in the IG/ID ratios from 24 for the as-made mixed SWNT to 30 

in the 1000°C Ar anneal mixed SWNT electrode. This suggests that defects have been 

healed and is consistent with the data collected for the as-made and Ar anneal 1000°C 

GO mixed SWNT composite electrodes. 

To distinguish between the individual contributions of graphene oxide and the M-

SWNTs, Dr. Anuradha Bulusu[86] conducted a parallel experiment with M-SWNT 

electrodes with the same processing conditions. The results of the transmittance and sheet 

resistance of the as-made and Ar anneal 1000°C M-SWNT electrodes are presented in 

Figure 5.8. It is interesting to note that after the M-SWNTs were annealed in an Ar 

environment at 1000°C, the sheet resistance improved, which is consistent, with the 

observations made for the 1000°C Ar anneal M-SWNT sample shown in chapter 4, (see 

Figure 4.9). As discussed in chapter 4 the improvement in sheet resistance for the M-
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SWNT electrodes is due in part to the removal of surfactants. However, the increase in 

transmittance by ~9% is peculiar and does not agree with the experiments done in chapter 

4. 

 

Figure 5.8 UV-Vis-NIR spectra and sheet resistance of as-made and Ar anneal 1000° 

mixed SWNT electrodes[86]. 

5.3.3 Hypothesized Effects of Oxygen Annealing 

The graphene oxide SWNT composite electrodes along with the SWNT 

electrodes all mysteriously experienced an increase in transmittance after being annealed 

in Ar environment at 1000°C in the First Nano Easy Tube Furnace. An important 

observation that was made with regards to the experimental procedure is that the 

pressures inside the furnace during the annealing processes were not monitored, 

whatsoever. Furthermore, the First Nano Furnace was heavily used for over 5 years. 

Therefore, it is reasonable to hypothesis that possibly there were slight air leakages 

flowing into the tube furnace during annealing process, as a result of natural degradation 

of the furnace over its lifetime.  
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Of the various gases that compose air, oxygen (21% by volume in air) has been 

known to decompose or “eat” away carbon nanotubes[104]. Hata et al. performed a 

thermogravimteric analysis in air on CVD grown SWNTs, the results for the run are 

presented in Figure 5.9. Inspection of Figure 5.9 shows that the combustion point for 

SWNTs starts at about 600°C when exposed to air. Interestingly Hata et al. also 

demonstrated that by controlling the amount of water vapor flowed into their furnace 

during the CVD growth, actually assisted growth allowing them to grow a 2.5mm tall 

“SWNT forest”. Moreover, Tsai et al. demonstrated that “bamboo-like” defects in CVD 

multi-walled carbon nanotubes were healed when water vapor was introduced during 

their rapid vacuum arc annealing process. Tsai et al. suggested that oxygen might have 

played an important role in healing defects[104]. 

 
Figure 5.9 Thermogravimetric analysis data for 10mg CVD SWNT in air with a 

10°C/min ramp rate. Taken from reference[112]. 

 
 Due to time and available equipment constraints, an in-depth study on the effects 

of annealing in a controlled oxygen environment was not carried out. Therefore, this 

upcoming discussion does not attempt to give strong evidence that in the presence of 

oxygen was the reason for the observed increases in transmittance in the experimental 

runs presented in this section. Rather the presence of oxygen in the annealing processes is 

presented as a hypothesis and is left for future work. 

 To begin the discussion of the hypothesized effects of annealing, a summary of 

the experimental data obtained for both the GO mixed SWNT and the GO M-SWNT is 
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presented in Table 5.1. The composite electrodes both experienced improvements in 

sheet resistance along with an increase in IG/ID on top of the improvements in 

transmittance. The increase in transmittance observed for the composite GO SWNTs is 

hypothesized to be caused by the slight presence of oxygen inside the tube furnace during 

the annealing process. The presence of oxygen is suspected to be the key difference as to 

why the healing of defects was observed in the experimental runs done in this chapter as 

opposed to the ones done in chapter 4. The decrease in sheet resistance for the GO 

SWNT composites is suggested to be caused by a combination of the removal of 

insulating surfactants SDS and SC, the healing of defects, and the reduction of graphene 

oxide.  

Table 5.1 Summary of optoelectronic properties and IG/ID for prepared reduced graphene 

oxide SWNT composites. 

Sample Rsh (Ω/sq) Transmittance (%T) IG/ID 

Mixed SWNT 

As-made 
7730 83 17 

Mixed SWNT 

1000°C Ar Anneal
4313 97 40 

M-SWNT 

As-Made 
987 79 24 

M-SWNT 

1000°C Ar Anneal
465 88 30 

 

As discussed earlier in this section to compliment the studies done on GO SWNT 

composites, parallel experiments were performed on SWNT electrodes fabricated and 

characterized with the same processing conditions. A summary of the optoelectronic and 

IG/ID data collected for the mixed SWNT and M-SWNT electrodes is presented in Table 

5.2 
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Table 5.2 Summary of optoelectronic properties and IG/ID for SWNT electrodes [86]. 

Sample Rsh (Ω/sq) Transmittance (%T) IG/ID

Mixed SWNT 

As Made 
100 50 28 

Mixed SWNT 

1000°C Ar Anneal 
609 67 52 

M-SWNT As-Made 470 71 - 

M-SWNT 1000°C Ar Anneal 368 80 - 

 
 The experimental runs for the SWNTs electrodes performed [86], also 

demonstrated comparable increases in transmittance for both mixed SWNTs and M-

SWNTs. Furthermore, the IG/ID was also shown to increase for the mixed SWNTs 

suggesting the healing of defects as was demonstrated for the GO mixed SWNT 

composite electrodes. Unfortunately, there was no IG/ID collected for the M-SWNT 

electrodes and therefore it is not known if the defects were healed through thermal 

annealing. The increase in sheet resistance for the 1000°C Ar anneal mixed SWNT 

electrode is likely attributed to the removal of surface functional groups as was 

demonstrated in chapter 4. Lastly, the improvement in sheet resistance in the 1000°C Ar 

anneal M-SWNT electrode is suggested to be attributed to the removal of surfactants and 

“possibly” the healing of defects.  

5.4 CVD Grown Graphene Metallic Carbon Nanotube Composites 

In this section, a CVD grown graphene M-SWNT composite electrode was 

studied briefly in an attempt to obtain the best performing CBN electrode. To determine 

the relative improvement in the optoelectronic properties obtained by adding two 

graphene layers a comparison as-made M-SWNT electrode was characterized as well. 
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Furthermore, a single graphene layer’s optoelectronic properties were characterized to 

give a reference point for the graphene CVD. 

5.4.1 Experimental Procedures 

Graphene CVD samples grown on copper were provided by Hossein Sojoudi and 

were prepared using the catalyst etching and subsequent stamping. The M-SWNT 

electrode was prepared from solution bought from Nanointegris and were prepared using 

the vacuum filtration method outlined in section 3.3. The M-SWNT electrodes were 

transferred onto a quartz slide through the film transfer process outlined in section 3.3.1. 

The M-SWNT electrode was prepared using an old frit and low quality DI water (see 

section appendix C).  

The optoelectronic properties for the graphene CVD samples were characterized 

and the results are presented in Figure 5.10. As expected the graphene CVD has no 

absorption peaks and has a transmittance of ~97% at a wavelength of 550nm. 

 

Figure 5.10 UV-Vis-NIR spectra along with sheet resistance of graphene CVD electrode. 

Graphene electrode provided by Hossein Sojoudi in Dr. Samuel Graham’s research group.  
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5.4.2 Results of Chemical Vapor Deposition Graphene Metallic Carbon 

Nanotube Composite 

 In this experiment, a vacuum filtered M-SWNT film was cut in half and one half 

was transferred onto a clean quartz slide and was labeled film A and the other half of M-

SWNT film was used for the graphene M-SWNT composite, film B. This was done to 

track the improvement in the optoelectronic properties of M-SWNT electrode by adding 

two layers of graphene. To build the graphene M-SWNT composite or fim B, a layer of 

graphene CVD was transferred onto a clean quartz slide, then the M-SWNT electrode 

was transferred on top of the graphene CVD layer, and finally another graphene layer 

was deposited on top of the M-SWNT electrode. The characterized optoelectronic 

properties of the “sandwiched” graphene CVD M-SWNT composite and of the M-SWNT 

electrode are presented in Figure 5.11. 

 

Figure 5.11 Comparison of M-SWNT transparent electrode versus sandwiched graphene 

CVD composite 

Metallic SWNT 

Metallic SWNT
CVD Graphene  

CVD Graphene  
Film A 

Film B 
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5.5 Conclusions 

 This chapter discussed the use of graphene SWNT composite electrodes as a 

means to improve the electronic properties of SWNT electrodes with a minimal impact 

on the transmittance. In this chapter, graphene oxide SWNT and CVD grown graphene 

SWNT composites electrodes were investigated. A summary of the topics covered in this 

chapter are presented, along with suggested future work. 

 Section 5.1 introduced graphene SWNT composites and motivated the need to 

study these composite materials as potential transparent electrodes for organic electronics. 

It was explained that the addition of graphene creates a significant increase in conduction 

pathways for charge carriers to conduct while minimally sacrificing optical transmittance 

(~2%T). Furthermore, a brief literature review was provided as well. 

 Section 5.2 discussed the experimental procedures utilized to prepare graphene 

oxide (GO) electrodes dispersed in DI water. However, the GO films were not easily 

transferred onto transparent substrates and it was necessary to add SWNTs in the GO 

solution to transfer the GO onto transparent substrates. The experimental methods 

utilized to anneal GO SWNT composites electrodes in an Ar environment at 1000°C 

were outlined.  

In section 5.3 the graphene oxide SWNT composite electrodes along with the 

SWNT electrodes all mysteriously experienced an increase in transmittance after being 

annealed in Ar environment at 1000°C in the First Nano Easy Tube Furnace. An 

important observation that was made with regards to the experimental procedure is that 

the pressures inside the furnace during the annealing processes were not monitored. The 

increase in transmittance observed for the composite GO SWNTs and SWNT electrodes 

was hypothesized to be caused by a slight presence of oxygen inside the tube furnace, due 

to air leakage, during the annealing process. The presence of oxygen was suspected to be 

the reason as to why the healing of defects was observed in the experimental runs done in 
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this chapter. This is supported by the study of Tsai et al. were it was demonstrated that 

“bamboo-like” defects in CVD multi-walled carbon nanotubes were healed when water 

vapor was introduced during their rapid vacuum arc annealing process. Tsai et al. 

suggested that oxygen might have played an important role in healing defects[104]. The 

observed decrease in sheet resistance for the prepared GO SWNT composites, despite 

increases in transmittance suggesting possible removal of material, was suggested to be 

caused by a combination of the removal of insulating surfactants SDS and SC, the 

healing of defects, and the reduction of graphene oxide. For the 1000°C Ar anneal mixed 

SWNT electrode the observed increase in sheet resistance for the was suggested to be 

attributed to the removal of surface functional groups as was demonstrated in chapter 4. 

For the 1000°C Ar anneal M-SWNT electrode improvement in sheet resistance was 

suggested to be attributed to the removal of surfactants and “possibly” the healing of 

defects.  

Section 5.4 characterized the optoelectronics of an M-SWNT electrode labeled 

film A and that of “sandwiched” graphene CVD MSWNT composite electrode labeled 

film B, where a layer of graphene was deposited above and below the MSWNT electrode. 

An improvement in the optoelectronic properties for film A was observed from a sheet 

resistance of 1084Ω/sq with 80%T at a wavelength of 550nm to a sheet resistance 

280Ω/sq with 76%T at a wavelength of 550nm. 

For future work, it is suggested to perform an annealing study of SWNT 

electrodes in a controlled oxygen environment, where Ar is flowed into the furnace to 

dilute the oxygen to ensure the films are not completely eaten away. Raman 

measurements to investigate the healing of defects are suggested as well. Lastly, a more 

detailed study of graphene CVD M-SWNT composite electrodes is also left for future 

work. 
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CHAPTER 6 : CONCLUSIONS AND FUTURE WORK 

6.1 Summary of Research and Conclusions 

The first goal of this thesis was to add to the fundamental understanding of the 

physics involved with the removal of surfactants for solution processed SWNT electrodes. 

Surfactant removal techniques that were studied included annealing in argon 

environments with temperatures up to 1000°C and through nitric acid treatments. The 

second goal of this thesis was to investigate the potential of graphene SWNT composite 

electrodes as high performing transparent electrodes. The insight gained in this work is 

suggested to be used for future studies to help optimize the optoelectronics properties of 

carbon based nanomaterial transparent conductive electrodes. 

Important findings in this work are as follow: 

 Chapter 4 expanded the understanding on the impact of surfactant removal on 

electrode performance. C-AFM measurements for as-made Sc-SWNT and M-

SWNT electrodes demonstrated, at the nanoscale, that the electrodes were 

plagued by electrically inactive or “dead” spots. These dead spots were argued to 

be detrimental to the performance of OLEDs and OPVs because they would force 

charge carriers on the surface of the positive electrode to be “redirected” to 

electrically active spots; and thereby increase the recombination probabilities of 

excited particles. Furthermore, nitric acid doped and dedoped M-SWNT 

electrodes demonstrated a dramatic improvement in the current conductivity maps 

obtain from C-AFM measurements with a +10mV bias from 1nA for the as made 

M-SWNT electrode to 100nA for the doped and dedoped M-SWNT electrodes. A 

similar trend was found for Sc-SWNT doped and dedoped electrodes; however 

the Sc-SWNT electrodes were not as electrically active as the M-SWNT 

electrodes. Suggesting that Sc-SWNT electrodes needed to be further doped with 

thionyl chloride to outperform M-SWNT electrodes. Moreover, it was found that 
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an optimal annealing temperature for M-SWNT electrodes was 600°C in an argon 

environment for 1 hour. The Sc-SWNT and mixed SWNTs were found to not 

benefit from annealing treatments. Finally, it was observed that the Ar anneal 

600°C and Ar anneal 1000°C Sc-SWNT electrodes after a 10 day exposure to air, 

experienced a drop in Rsh to 36.3% and 29.6% of its original value, respectively. 

This suggests that the negative effects of annealing are reversible. The decrease in 

sheet resistance is suggested to be likely due to oxygen adsorption from exposure 

to air.  

 In chapter 5, graphene oxide SWNT composite electrodes along with the SWNT 

electrodes all mysteriously experienced an increase in transmittance after being 

annealed in Ar environment at 1000°C in the First Nano Easy Tube Furnace. An 

important observation that was made with regards to the experimental procedure 

is that the pressures inside the furnace during the annealing processes were not 

monitored. The increase in transmittance observed for the composite GO SWNTs 

and SWNT electrodes was hypothesized to be caused by a slight presence of 

oxygen inside the tube furnace, due to air leakage, during the annealing process. 

The presence of oxygen is suspected to be the reason as to why the healing of 

defects was observed in the experimental runs done in this chapter. The observed 

decrease in sheet resistance for the prepared GO SWNT composites was 

suggested to be caused by a combination of the removal of insulating surfactants 

SDS and SC, the healing of defects, and the reduction of graphene oxide. For the 

1000°C Ar anneal mixed SWNT electrode the observed increase in sheet 

resistance was suggested to be attributed to the removal of surface functional 

groups as was demonstrated in chapter 4. For the 1000°C Ar anneal M-SWNT 

electrode improvement in sheet resistance was suggested to be attributed to the 

removal of surfactants and “possibly” the healing of defects. Finally, the addition 

of chemical vapor deposition grown graphene layers above and below an M-
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SWNT was found to significantly improve the electronic properties of M-SWNT 

electrode with only minimal impact on optical transmittance. 

6.2 Future Work 

 For future work on the impact of surfactant removal, it is suggested to 

characterize Ar annealed SWNT electrodes with conductive tip atomic force microscopy 

measurements to investigate the nanoscale currents maps of the annealed electrodes. It is 

suspected that a noticeable increase in conductivity should be observed, but it is not clear 

how much. It would be interesting to observe how the Ar annealed SWNT electrodes 

compare to the nitric acid doped SWNT electrodes. This would give additional 

knowledge on the pros and cons of using thermal treatments. Also, a thermogravimetric 

analysis on mixed SWNT, semiconducting SWNT, and metallic SWNT electrodes is 

suggested for future work to better understand how trace surfactants are removed as a 

function of temperature.  

For future work on annealing studies, it is suggested to anneal SWNT electrodes 

in a controlled oxygen environment, where Ar is flowed into the furnace to dilute the 

oxygen to ensure that the films are not completely eaten away. Raman measurements to 

investigate the healing of defects are suggested as well.  

For future work on refunctionalization of carbon nanotubes after being annealed 

in an Ar environment, it is suggested to flow a hydrocarbon gas such as methane or 

acetylene in argon environment during the secondary anneal process. The presence of 

hydrocarbons may have the potential to refunctionalize the carbon nanotubes and 

possibly heal defects. Another possible technique to refunctionalize the nanotubes is 

through acid reflux treatment with sulfuric acid.  

Finally, for future work it is suggested to study an optimally annealed metallic 

SWNT graphene composite electrode that is subsequently treated with nitric acid and 

thionyl chloride. To do this it is suggested to first deposit a layer of chemical vapor 
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deposition grown graphene on a transparent substrate. Next, deposit a metallic SWNT 

electrode on top of the graphene layer and anneal at the optimized temperature of 600°C. 

Thereafter, the electrode should be doped with nitric acid and subsequently with thionyl 

chloride. Finally, another layer of chemical vapor deposition graphene is suggested to be 

deposited on top of the electrode. 

 



APPENDIX A: STRUCTURE AND ELECTRONIC PROPERTIES 

OF CARBON BASED NANOMATERIALS 

A.1 Structure and Electronic Properties of Graphene 

In Figure A.1, the unit cell of graphene is constructed by enclosing two carbon 

atoms, A and B. The lattice vectors 1a


 and 2a


can be determined through inspection as 

shown in equation A.1, where the lattice constant is defined in equation A.2. The chiral 

vector 
hC


can be used to uniquely identify any position on the graphene sheet. 
hC


is 

defined in equation A.3, where m and n are integers.  

 

 

 

   

 

Figure A.1 Graphene honeycomb lattice structure with unit cell and lattice vectors shown. 

The nearest neighbor unit cells are numbered from 1 to 4. Adapted from reference[113]. 
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To determine the density of states of graphene it is first necessary to solve the 

Schrödinger equation for the 2D energy dispersion relation, E2D(kx,ky). The Schrödinger 

equation is defined in equation A.4, where H is the Hamiltonian operator, and Φ is the 

wave function. To solve for the energy dispersion relation of graphene, the Schrödinger 

equation can be written in matrix form as shown in equation A.5. 
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      HE   (A.5) 

However, equation A.5 is impractical as the size of the Hamiltonian matrix is 

NbxNb, where N is the number of unit cells in a structure and b is the number of basis 

functions per unit cell. Typically N is a huge number, thereby complicating matters by 

yielding a very large Hamiltonian matrix. Fortunately, for periodic structures equation 

A.5 can be rewritten as shown in equation in A.6, so that all the unit cells in a structure 

can be summed N times and thus shrinking the Hamiltonian to  a bxb matrix.  

     m
m

nmn HE    (A.6) 

Next, there are two carbon atoms per unit cell in graphene and there are four 

valence orbitals (2s, 2px, 2py, 2pz ), where the core level 1s is stable and can be ignored, 

making b equal to eight. Therefore, there are 8 basis functions in the unit cell, resulting in 

an 8x8 Hamiltonian matrix, which is still too large to solve without the aid of a computer. 

Fortunately, it has been found that for a flat sheet of graphene the 2s, 2px, and 2py orbitals 

are dissociated from the 2pz orbital in the Hamiltonian matrix [113]. This follows since 

the energy levels for the 2s, 2px,  and 2py  orbitals lie far above or far below the Fermi 

level and the 2pz orbital lies around the Fermi level [113]. 

The three valence orbitals of carbon in the 2s, 2px, 2py orbitals hybridize to form 

an sp2 orbital. The sp2 orbitals form σ-bonds that bind graphene together and as such are 

only useful to determine the mechanical properties of graphene [113]. The remaining 

valence orbital 2pz forms π-bonds in graphene, which are largely responsible for charge 

transport. Thus, when considering electronic properties of graphene it is only necessary to 

use the 2pz orbital as a basis function to calculate the density of states [113]. Therefore, 

the original Hamiltonian matrix has again been shrunk from an 8x8 matrix to a 2x2 

matrix and therefore simplifying the problem immensely. 
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Graphene’s structure is periodic and therefore Bloch’s theorem (equation A.4) in 

discrete form applies as a solution to the wavefunction in Schrödinger’s equation. 

Substituting equation A.7 into equation A.6 and simplifying yields equation A.8. Now a 

new Hamiltonian matrix can be defined, which shall be denoted as [h(k)] in equation A.9. 

     nrki
n e

 0  (A.7) 
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The terms in the new Hamiltonian can be determined through the tight binding 

method by adding the contributions of the nearest-neighbors with equation A.9 and 

referring to Figure 2.2. The new Hamiltonian [h(k)] is setup as shown in equation A.10. 

Equation A.10 can then be simplified as shown in equation A.11. By defining a new 

dummy variable h0, [h(k)] can be rewritten as shown in equation A.12, where h0
* is the 

conjugate of h0 and t is the nearest-neighbor transfer integral with a value of ~2.8eV[114].  

    2121

00

0
 

00

0
 

0

00
 

0

00

0

0 akiakiakiaki e
t

e
t

e
t

e
tt

t
kh
















































  (A.10) 

     
  

















0  1

 10
21

21

akiaki

akiaki

eet

eet
kh 




 (A.11) 

     211  ;
0

0
0*

0

0 akiaki eeth
h

h
kh


 








   (A.12) 

Expanding equation A.12 and simplfying ho can be rewritten as shown in equation 

A.13. Recallinng euler’s formula ho can be rewritten as shown in equation A.14 below. 
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Finally solving for the eigenvalues yields the solution for the 2D energy 

dispersion relation as shown in equation A.15. 
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The density of states can then be determined from equation A.16.[115] 
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 When dealing with a large enough sheet of graphene sheet the summation in 

equation in 2.10 can be transformed into a integral as shown in equation A.17. [116] 
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The energy band theory for graphene that considers the next nearest-neighbors 

contributions was originally calculated by P.R. Wallace[117] and can be expressed as 

shown in equation A.18 [114], where f (k) is defined in equation A.19 and t' is the next 

nearest-neighbor transfer integral .  
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The density of states of graphene per unit cell, considering the contributions of the 

next nearest-neighbors with an assumed value of t' =0.2t and neglecting the contributions 
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of the next nearest-neighbor constributions are shown in Figure A.2 (a) and (b), 

respectively. 

 

Figure A.2 (a) Density of states of graphene per unit cell as a function of energy 

considering next nearest neighbors with t'=0.2t. (b) Density of states of graphene per unit 

cell as a function of energy neglecting the next nearest neighbors with t'=0.Taken from 

reference [114]. 

A.2 Structure and Electronic Properties of Carbon Nanotubes 

By referring to Figure A.3 it can be seen that the wrap angle θ is defined as the 

angle between ܽଵሬሬሬሬԦ and the chiral vector Ch. The wrap angle is then defined as shown in 

equation A.20 and varies between 0° and 30° [87]. The diameter of carbon nanotubes is 

on the order of nanometers and its diameter can be determined through equation A.21, 

which is obtained through inspection of Figure A.3. 
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Figure A.3 An unrolled carbon nanotube with (n, m) = (4, 2). The rectangle OAB'B is 

the unit cell for the carbon nanotube. Adapted from Reference [87]. 

 
 To get the density of states of CNTs, it is necessary to start with the 2D energy 

dispersion relation of graphene from equation A.15. The resulting plot of the energy 

dispersion relation of graphene as a function of kx and ky is presented in Figure A.4. For 

clarity, the first Brillouin zone is drawn below graphene’s bandstructure. The reciprocal 

lattice vectors that are used in reciprocal space are defined in equation A.22. The points Γ, 

K, and M are high symmetry points that are used for obtaining 1D energy dispersion 

relations for CNTs [87]. When a carbon nanotube is rolled up from a sheet of graphene a 

periodic boundary condition can be imposed in the circumferential direction as shown in 

equation A.23, where j is an integer [118]. The periodic boundary condition only allows a 

set of wavevectors that satisfy equation A.24 to exist, where λ is the de Broglie 

wavelength [87]. 
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Figure A.4 2D energy dispersion relation of graphene plotted as a function of kx and ky. 

The conduction π* and valence π bands meet at the six K points (Dirac points). The first 

Brillouin zone of graphene in reciprocal space is shown below the band structure of 

graphene. The black lines represent the allowed states of a (3, 3) nanotube or the 

perpendicular wave vectors that satisfy the equation  ࡯ሬሬԦ · ࢑ሬሬԦ ൌ ૛࣊࢐. Taken from reference 

[118]. 

 Furthermore, the Dirac points K is where the energy levels lie at zero and thus, a 

carbon nanotube will have no band gap if the wave vectors pass through the center of one 

of the Dirac points as is the case for a (3,3) CNT. Similarly, if a wavevector does not pass 

through the Dirac point a band gap will be created. This results in carbon nanotubes 

exhibiting either metallic or semiconducting properties depending on the wrap angle of 

the carbon nanotube.  

The angle at which the CNT wraps determines if it is a zigzag, armchair, or chiral 

nanotube. CNTs with a wrap angle of 0° or indices (n,0) are called zigzag nanotubes, a 

wrap angle of 30° or indices(n,n) correspond to armchair nanotubes. All other wrap 

angles correspond to chiral nanotubes. Examples of zigzag, armchair, and chiral 

nanotubes are shown in Figure A.5. 
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Figure A.5 Atomic structures of (12,0) zigzag, (6,6) armchair, and (6,4) chiral nanotubes. 

Taken from reference [119]. 

 
All armchair CNTs are metallic and other metallic nanotubes can be more 

generally determined through equation A.25, where q is an integer. Equation A.25 is a 

direct result of the periodic boundary condition imposed in equation A.24 [120]. All other 

CNTs that do not satisfy equation A.25 are semiconducting. 

 

 qmn 332   (A.25) 

 

 The 1D energy dispersion relations obtained from the wavevectors passing 

through the 2D energy dispersion relation in the 1st Brillouin zone can be used to 

calculate the DOS of CNTs through the use of the zone folding approximation. It is 

important to note that the zone folding approximation does not take into account the 

curvature of CNTs[20]. The resulting DOS for a metallic (9,0) SWNT and a 

semiconducting SWNT (10,0) are shown in Figure A.6 (a) and (b), respectively. 
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Figure A.6 DOS versus energy for (a) (9,0) and (b) (10,0) SWNT, derived by zone-

folding of the band structure of the graphene sheet. Fermi Energy is assumed to be 

located at 0eV. Taken from Reference [20]. 

 
The singularity points in the DOS for both M-SWNT and Sc-SWNT are called 

van Hove singularities and the distance between them are called energy transitions, 

labeled M11, M22, S11, S22, and S33 in Figure A.6. These energy transition absorption 

peaks show up in UV-Vis NIR spectroscopy measurements and are an invaluable tool 

that is used to determine the effectiveness of a dopant and the degree of dedoping after 

thermal annealing. 

   

(a) (b) 
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APPENDIX B: OTHER SHEET RESISTANCE MEASUREMENT 
TECHNIQUES 

B.1 Two Point Probe Method 

 A very crude method to measure the sheet resistance is the two-point probe 

method, which involves the use of a multimeter and two probing wires as shown in 

Figure B.1a. Typically, the sheet resistance using this method is simply taken as the 

resistance value read on the multimeter, as was done by Parekh et al.[53], where a Rsh as 

low as 30Ω/sq was claimed. It is clear from the circuit diagram in Figure B.1b that the 

actual resistance measured from the multimeter is the total resistance, RT as shown in 

equation B.1. 

 

Figure B.1 (a) Picture of two point probe method used to measure sheet resistance. 

Taken from reference[53] (b) Equivalent circuit diagram of two point probe. 

 

 RRR cT  2  (B.1) 

This methodology of using the 2 point probe technique however is incorrect as the sheet 

resistance is related to the bulk resistance as suggested by equation 3.2. Where the cross-

sectional area for circular vacuum filtered films (see Figure B.1a) is πDt, where D is the 

diameter. By referring to equation 3.2 and substituting the cross-section area for a 

circular vacuum filtered film and recalling the definition of Rsh (equation 2.2) yields 

equation B.2. If it is assumed that the two probes are measured at a length that is 

approximately equal to the diameter of the film. Equation 3.7 can be simplified into 

equation B.3.  

R 

Rc Rc 

+ I -
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This means that the bulk resistance is π times larger than the sheet resistance. Therefore, 

the true Rsh at the most can be theoretically underestimated by a factor of π. This is 

significant and can lead to misleading results; however it is important to note that an 

underestimation of a factor of π is not likely as the contact resistance, which is typically 

not negligible, has not been accounted for in the two-point probe technique. Therefore, 

the inability to properly indentify the resistance contributions from the contact resistance 

makes the two point probe technique unreliable and difficult to extract the true Rsh. 

  B.2 Four Point Probe Method 

 The four-point probe method avoids the issue of contact resistance in sheet 

resistance measurements and was first developed by Kelvin[121]. In this method a 

constant current source is applied to the outer probes and a voltmeter is connected to the 

inner probes to measure the voltage drop. A four point probe schematic and electrical 

circuit diagram are shown in Figure B.2 a and b, respectively, where the spacing between 

electrical probes S1, S2, S3 are equal to each other or simply equal to S. In Figure B.2 the 

voltage drops attributed to the contact resistances connecting the voltmeter to the bulk 

resistance are considered to be negligible and can therefore be neglected in the circuit 

diagram. The reason they are considered to be negligible is that by the principle of 

operation of a voltmeter, the voltage is measured over an equivalent open-circuit. In other 

words, even if there were resistance between the contact of the voltmeter and the bulk 

resistance they would be infinitely large and in parallel with the bulk resistance. Applying 

the rule for resistors in parallel, the contributions are simply 1/∞ or equivalently zero. 
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Therefore, the bulk resistance can then simply be determined by using Ohm’s law across 

it as is shown in equation B.4. The contact resistance can be extracted from equation B.1 

which applies to the outer probes. 

 

 

 

 

 

 

Figure B.2 (a) Schematic of four point probe method used to measure sheet resistance. 

Adapted from references [122, 123] (b) Equivalent circuit diagram of four point probe. (c) 

Open-circuit voltage measured by voltmeter across R. 

 

 
I

V
R  (B.4) 

To obtain the sheet resistance for a circular sample as shown in Figure B.2a it is 

necessary to start from the differential form of equation 3.2 across the inner probes as 

shown in equation B.6. Integrating both sides and expanding yields equation B.7. 

Evaluating the integral and noting that Rsh is defined as the resistivity divided by the 

thickness(equation 2.2) yields equation B.8 [123]. 
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 This implies that even though the four point probe method resolves the contact 

resistance problem there needs to be a correction factor, k, to account for the geometry of 

the sample. To finish this example so that the correction factor for a circular sample is 

similar to what is given in literature, a current balance for the inner probes shows that the 

current passing across R is in fact 2I or twice the current from the current source. 

Applying Ohm’s law gives R=V/(2I) combining this result with equation yields equation 

B.9 and the correction factor is ~4.53 which is agreement with literature [122]. 

 

   I

V
k

I

V
R 

2lnsh


 (B.9) 

 

 Although the four point probe measurement is an improvement from the two-

point probe the correction factor needed to calculate Rsh is dependent upon the geometry. 

Due to the difficulty in producing samples with precisely the exact same geometry, 

unwanted experimental error may arise from using a four point probe method. However, 

the transfer length method (TLM), an extension of the transmission line method, is a 

suitable technique to accurately measure the sheet resistance of CBN transparent 

electrode.  
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APPENDIX C: EFFECTS OF PROCESSING CONDITIONS AND 

CONTAMINANTS ON TRANSPARENT ELECTRODES 

C.1 Effect of Processing Conditions on Carbon Based Nanomaterials 

 Throughout the course of this work it was experimentally observed that the 

processing conditions had a direct impact on the conductivity of as-made CBN electrodes. 

Besides the presence of Fluorinated Hydrocarbons contaminants (see section 2.5.2) 

provided unintentionally by vendor Nanointegris and aggregation of CBNs (well 

documented in literature for SWNTs) in solution overtime that the author had limited 

control over, other processing conditions were investigated. Of all the CBN solutions 

used in this work, the graphene puresheets (GPS) research grade solution was found to be 

the most sensitive to processing conditions. As a direct consequence of GPS solutions 

sensitivity to processing conditions it was possible to pinpoint which processing 

conditions needed to be addressed to improve the fabrication of CBN electrodes. 

Unfortunately, due to the late availability of this solution (samples available around 

March 2010 and solutions purchased in July 2010) all samples prepared in this work were 

not prepared with optimal processing conditions.  

 To address the issue of inconsistency in as-made samples throughout the course of 

this work, with what was observed in literature, and even in different stages of this work; 

a set of experiments with distinct processing conditions was conducted to pinpoint the 

processing conditions that affected the CBN electrodes the most. In this experiment it 

was found that the condition of the glass frit old (used for at least 2 years) or new (used at 

most 2 months) and the resistivity of DI water in MΩ-cm were the most influential in 

determining the conductivity of the vacuum filtered CBN electrodes. Shown in Figure 

C.1a and b are pictures of the new and old glass frits, respectively. From inspection of 

Figure C.2 it is easily noticed that the new glass frit is smoother than the old glass frit. 
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Utilizing the new glass frit should result in smoother vacuum filtered films. Thus, it is 

hypothesized that the smoother films will have more interparticle contacts than the old 

frit. The logic for this is that the rougher films will likely have CBN poking out on the 

surface of the electrode causing shorts; whereas the smoother films will have the 

tendency to lie flat thereby creating more interparticle contacts. 

   

Figure C.1 (a) Picture of new glass frit. (b) Picture of old glass frit. There is a noticeable 

difference between the two glass frits. The new glass frit is smoother than the old glass 

frit, thus resulting in smoother vacuum filtered films. 

The results of the experiment are presented in Table C.1. For clarity high quality 

and low quality DI water will correspond to resistivities of ~16 MΩ-cm and ~0.5 MΩ-cm, 

respectively. 

Table C.1 Comparison of as-made graphene puresheets electrodes fabricated with 

distinct processing conditions. 

As-made Processing Conditions 

Rsh (Ω/sq) 
New  

Glass Frit
Old  

Glass Frit
Low Quality

DI Water 
High Quality 

DI Water 
50,654  X X  
26,462  X  X 
13,299 X   X 

 
From the results obtained in Table C.1it is clear that having a relatively new frit 

and using higher quality DI water are essential for obtaining high quality CBN electrodes. 

It is suggested that lower quality DI water has a negative impact on the conductivity of 

CBN electrodes due to the unfiltered salts and minerals causing shorts in the film. 

However, further research would need to be performed to validate this theory. For the 

(b) (a) 
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condition of the glass frit, it is hypothesized that the older glass frits will likely have been 

clogged up due to heavy usage over a 2 year time span. This would likely cause the 

vacuum filtered films, at the nanoscale, to have uneven patches caused by clogged 

material over the surface areas of the glass frit. This would likely increase the surface 

roughness of vacuum filtered film and decrease the number of contact points between 

CBNs. As a result the conductivity of the films would be negatively impacted. 

 Furthermore, it was also found that processing conditions had to some extent an 

irreversible negative impact on the conductivity of CBN electrodes. In this next 

experiment the same processing conditions were repeated for GPS films annealed in Ar at 

1000°C. The results are presented in Table C.2. 

Table C.2 Comparison of Ar anneal graphene puresheets electrodes fabricated with 

distinct processing conditions.  

Ar Annealed  
1000°C 

Processing Conditions 

Rsh (Ω/sq) 
New  

Glass Frit
Old  

Glass Frit
Low Quality

DI Water 
High Quality

DI Water 
3,554  X X  
3,154  X  X 
2,416 X   X 

 
This study has addressed the issue of inconsistencies observed of fabricated CBN 

transparent electrodes in this work. As a result of not pinpoint these processing conditions 

early in the stage of this research, it is reiterated that the goal of this thesis is not to 

fabricate CBN electrodes with the best optoelectronic properties, but rather to observe, 

understand, and adequately describe the underlying physics involved throughout the 

course of this work. 

C.2 Complications with Fluorinated Hydrocarbon Contaminants 

Although Nanointegris has been able to consistently deliver type sorted SWNTs, 

which have been invaluable in the research conducted in this work, the DGUC process is 
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not without its problems, as fluorinated hydrocarbon contaminants have been detected in 

solutions sent by Nanointegris. These fluorinated hydrocarbon contaminants cannot be 

completely eliminated from Nanointegris’ process. The fluorinated hydrocarbon 

contaminants are immiscible in water and when it is present in the SWNT solution it can 

cause phase separation at the macroscopic and microscopic scale. Shown in Figure C.2e a 

and b is a picture of spots forming at the macroscopic scale for a Sc-SWNT electrode and 

SEM image at 2000x magnification of a doped MSWNT that was annealed prior to 

doping at 600°C, respectively. 

         
Figure C.2 (a) Photo of Semiconducting SWNT film vacuum filtered from solution 

containing fluorinated hydrocarbon contaminants. (b) SEM image of doped Metallic 

SWNT Film Annealed at 600C containing contaminants. 

 This fluorinated hydrocarbon is suspected to stick to the walls of any glassware it 

comes into contact with and thereby contaminating any new films that were made using 

the same glassware. The spots that form on the SWNT surface compromise the film 

integrity, quality, and negatively impact the sheet resistance of SWNT films due to the 

higher presence of dead spots. It is not known how to remove this chemical. Furthermore, 

the Fluorine in this contaminant is suspected to bond to the walls of the CNT as the 

Fluorine was still detected by XPS to be present on films that were annealed to 

temperatures of 1000°C. For future work, it is suggested to use ultrasonic spray coating 

to deposit these films to avoid forming breaks in SWNT films.    
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